@inproceedings{ma-etal-2017-detect,
title = "Detect Rumors in Microblog Posts Using Propagation Structure via Kernel Learning",
author = "Ma, Jing and
Gao, Wei and
Wong, Kam-Fai",
editor = "Barzilay, Regina and
Kan, Min-Yen",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P17-1066",
doi = "10.18653/v1/P17-1066",
pages = "708--717",
abstract = "How fake news goes viral via social media? How does its propagation pattern differ from real stories? In this paper, we attempt to address the problem of identifying rumors, i.e., fake information, out of microblog posts based on their propagation structure. We firstly model microblog posts diffusion with propagation trees, which provide valuable clues on how an original message is transmitted and developed over time. We then propose a kernel-based method called Propagation Tree Kernel, which captures high-order patterns differentiating different types of rumors by evaluating the similarities between their propagation tree structures. Experimental results on two real-world datasets demonstrate that the proposed kernel-based approach can detect rumors more quickly and accurately than state-of-the-art rumor detection models.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ma-etal-2017-detect">
<titleInfo>
<title>Detect Rumors in Microblog Posts Using Propagation Structure via Kernel Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Ma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Gao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kam-Fai</namePart>
<namePart type="family">Wong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Regina</namePart>
<namePart type="family">Barzilay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>How fake news goes viral via social media? How does its propagation pattern differ from real stories? In this paper, we attempt to address the problem of identifying rumors, i.e., fake information, out of microblog posts based on their propagation structure. We firstly model microblog posts diffusion with propagation trees, which provide valuable clues on how an original message is transmitted and developed over time. We then propose a kernel-based method called Propagation Tree Kernel, which captures high-order patterns differentiating different types of rumors by evaluating the similarities between their propagation tree structures. Experimental results on two real-world datasets demonstrate that the proposed kernel-based approach can detect rumors more quickly and accurately than state-of-the-art rumor detection models.</abstract>
<identifier type="citekey">ma-etal-2017-detect</identifier>
<identifier type="doi">10.18653/v1/P17-1066</identifier>
<location>
<url>https://aclanthology.org/P17-1066</url>
</location>
<part>
<date>2017-07</date>
<extent unit="page">
<start>708</start>
<end>717</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Detect Rumors in Microblog Posts Using Propagation Structure via Kernel Learning
%A Ma, Jing
%A Gao, Wei
%A Wong, Kam-Fai
%Y Barzilay, Regina
%Y Kan, Min-Yen
%S Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2017
%8 July
%I Association for Computational Linguistics
%C Vancouver, Canada
%F ma-etal-2017-detect
%X How fake news goes viral via social media? How does its propagation pattern differ from real stories? In this paper, we attempt to address the problem of identifying rumors, i.e., fake information, out of microblog posts based on their propagation structure. We firstly model microblog posts diffusion with propagation trees, which provide valuable clues on how an original message is transmitted and developed over time. We then propose a kernel-based method called Propagation Tree Kernel, which captures high-order patterns differentiating different types of rumors by evaluating the similarities between their propagation tree structures. Experimental results on two real-world datasets demonstrate that the proposed kernel-based approach can detect rumors more quickly and accurately than state-of-the-art rumor detection models.
%R 10.18653/v1/P17-1066
%U https://aclanthology.org/P17-1066
%U https://doi.org/10.18653/v1/P17-1066
%P 708-717
Markdown (Informal)
[Detect Rumors in Microblog Posts Using Propagation Structure via Kernel Learning](https://aclanthology.org/P17-1066) (Ma et al., ACL 2017)
ACL