@inproceedings{ji-etal-2017-nested,
title = "A Nested Attention Neural Hybrid Model for Grammatical Error Correction",
author = "Ji, Jianshu and
Wang, Qinlong and
Toutanova, Kristina and
Gong, Yongen and
Truong, Steven and
Gao, Jianfeng",
editor = "Barzilay, Regina and
Kan, Min-Yen",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P17-1070/",
doi = "10.18653/v1/P17-1070",
pages = "753--762",
abstract = "Grammatical error correction (GEC) systems strive to correct both global errors inword order and usage, and local errors inspelling and inflection. Further developing upon recent work on neural machine translation, we propose a new hybrid neural model with nested attention layers for GEC.Experiments show that the new model can effectively correct errors of both types by incorporating word and character-level information, and that the model significantly outperforms previous neural models for GEC as measured on the standard CoNLL-14 benchmark dataset. Further analysis also shows that the superiority of the proposed model can be largely attributed to the use of the nested attention mechanism, which has proven particularly effective incorrecting local errors that involve small edits in orthography."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ji-etal-2017-nested">
<titleInfo>
<title>A Nested Attention Neural Hybrid Model for Grammatical Error Correction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jianshu</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qinlong</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kristina</namePart>
<namePart type="family">Toutanova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yongen</namePart>
<namePart type="family">Gong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Truong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jianfeng</namePart>
<namePart type="family">Gao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Regina</namePart>
<namePart type="family">Barzilay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Grammatical error correction (GEC) systems strive to correct both global errors inword order and usage, and local errors inspelling and inflection. Further developing upon recent work on neural machine translation, we propose a new hybrid neural model with nested attention layers for GEC.Experiments show that the new model can effectively correct errors of both types by incorporating word and character-level information, and that the model significantly outperforms previous neural models for GEC as measured on the standard CoNLL-14 benchmark dataset. Further analysis also shows that the superiority of the proposed model can be largely attributed to the use of the nested attention mechanism, which has proven particularly effective incorrecting local errors that involve small edits in orthography.</abstract>
<identifier type="citekey">ji-etal-2017-nested</identifier>
<identifier type="doi">10.18653/v1/P17-1070</identifier>
<location>
<url>https://aclanthology.org/P17-1070/</url>
</location>
<part>
<date>2017-07</date>
<extent unit="page">
<start>753</start>
<end>762</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Nested Attention Neural Hybrid Model for Grammatical Error Correction
%A Ji, Jianshu
%A Wang, Qinlong
%A Toutanova, Kristina
%A Gong, Yongen
%A Truong, Steven
%A Gao, Jianfeng
%Y Barzilay, Regina
%Y Kan, Min-Yen
%S Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2017
%8 July
%I Association for Computational Linguistics
%C Vancouver, Canada
%F ji-etal-2017-nested
%X Grammatical error correction (GEC) systems strive to correct both global errors inword order and usage, and local errors inspelling and inflection. Further developing upon recent work on neural machine translation, we propose a new hybrid neural model with nested attention layers for GEC.Experiments show that the new model can effectively correct errors of both types by incorporating word and character-level information, and that the model significantly outperforms previous neural models for GEC as measured on the standard CoNLL-14 benchmark dataset. Further analysis also shows that the superiority of the proposed model can be largely attributed to the use of the nested attention mechanism, which has proven particularly effective incorrecting local errors that involve small edits in orthography.
%R 10.18653/v1/P17-1070
%U https://aclanthology.org/P17-1070/
%U https://doi.org/10.18653/v1/P17-1070
%P 753-762
Markdown (Informal)
[A Nested Attention Neural Hybrid Model for Grammatical Error Correction](https://aclanthology.org/P17-1070/) (Ji et al., ACL 2017)
ACL
- Jianshu Ji, Qinlong Wang, Kristina Toutanova, Yongen Gong, Steven Truong, and Jianfeng Gao. 2017. A Nested Attention Neural Hybrid Model for Grammatical Error Correction. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 753–762, Vancouver, Canada. Association for Computational Linguistics.