@inproceedings{sun-etal-2017-semantic,
    title = "Semantic Dependency Parsing via Book Embedding",
    author = "Sun, Weiwei  and
      Cao, Junjie  and
      Wan, Xiaojun",
    editor = "Barzilay, Regina  and
      Kan, Min-Yen",
    booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
    month = jul,
    year = "2017",
    address = "Vancouver, Canada",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/P17-1077/",
    doi = "10.18653/v1/P17-1077",
    pages = "828--838",
    abstract = "We model a dependency graph as a book, a particular kind of topological space, for semantic dependency parsing. The spine of the book is made up of a sequence of words, and each page contains a subset of noncrossing arcs. To build a semantic graph for a given sentence, we design new Maximum Subgraph algorithms to generate noncrossing graphs on each page, and a Lagrangian Relaxation-based algorithm tocombine pages into a book. Experiments demonstrate the effectiveness of the bookembedding framework across a wide range of conditions. Our parser obtains comparable results with a state-of-the-art transition-based parser."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sun-etal-2017-semantic">
    <titleInfo>
        <title>Semantic Dependency Parsing via Book Embedding</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Weiwei</namePart>
        <namePart type="family">Sun</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Junjie</namePart>
        <namePart type="family">Cao</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Xiaojun</namePart>
        <namePart type="family">Wan</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2017-07</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Regina</namePart>
            <namePart type="family">Barzilay</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Min-Yen</namePart>
            <namePart type="family">Kan</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Vancouver, Canada</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>We model a dependency graph as a book, a particular kind of topological space, for semantic dependency parsing. The spine of the book is made up of a sequence of words, and each page contains a subset of noncrossing arcs. To build a semantic graph for a given sentence, we design new Maximum Subgraph algorithms to generate noncrossing graphs on each page, and a Lagrangian Relaxation-based algorithm tocombine pages into a book. Experiments demonstrate the effectiveness of the bookembedding framework across a wide range of conditions. Our parser obtains comparable results with a state-of-the-art transition-based parser.</abstract>
    <identifier type="citekey">sun-etal-2017-semantic</identifier>
    <identifier type="doi">10.18653/v1/P17-1077</identifier>
    <location>
        <url>https://aclanthology.org/P17-1077/</url>
    </location>
    <part>
        <date>2017-07</date>
        <extent unit="page">
            <start>828</start>
            <end>838</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Semantic Dependency Parsing via Book Embedding
%A Sun, Weiwei
%A Cao, Junjie
%A Wan, Xiaojun
%Y Barzilay, Regina
%Y Kan, Min-Yen
%S Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2017
%8 July
%I Association for Computational Linguistics
%C Vancouver, Canada
%F sun-etal-2017-semantic
%X We model a dependency graph as a book, a particular kind of topological space, for semantic dependency parsing. The spine of the book is made up of a sequence of words, and each page contains a subset of noncrossing arcs. To build a semantic graph for a given sentence, we design new Maximum Subgraph algorithms to generate noncrossing graphs on each page, and a Lagrangian Relaxation-based algorithm tocombine pages into a book. Experiments demonstrate the effectiveness of the bookembedding framework across a wide range of conditions. Our parser obtains comparable results with a state-of-the-art transition-based parser.
%R 10.18653/v1/P17-1077
%U https://aclanthology.org/P17-1077/
%U https://doi.org/10.18653/v1/P17-1077
%P 828-838
Markdown (Informal)
[Semantic Dependency Parsing via Book Embedding](https://aclanthology.org/P17-1077/) (Sun et al., ACL 2017)
ACL
- Weiwei Sun, Junjie Cao, and Xiaojun Wan. 2017. Semantic Dependency Parsing via Book Embedding. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 828–838, Vancouver, Canada. Association for Computational Linguistics.