
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1160–1170
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1107

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1160–1170
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1107

Detecting annotation noise in automatically labelled data

Ines Rehbein Josef Ruppenhofer
IDS Mannheim/University of Heidelberg, Germany

Leibniz Science Campus “Empirical Linguistics and Computational Language Modeling”
rehbein@cl.uni-heidelberg.de, ruppenhofer@ids-mannheim.de

Abstract

We introduce a method for error detec-
tion in automatically annotated text, aimed
at supporting the creation of high-quality
language resources at affordable cost. Our
method combines an unsupervised gener-
ative model with human supervision from
active learning. We test our approach on
in-domain and out-of-domain data in two
languages, in AL simulations and in a real
world setting. For all settings, the results
show that our method is able to detect
annotation errors with high precision and
high recall.

1 Introduction

Until recently, most of the work in Computational
Linguistics has been focussed on standard written
text, often from newswire. The emergence of two
new research areas, Digital Humanities and Com-
putational Sociolinguistics, have however shifted
the interest towards large, noisy text collections
from various sources. More and more researchers
are working with social media text, historical data,
or spoken language transcripts, to name but a few.
Thus the need for NLP tools that are able to pro-
cess this data has become more and more appar-
ent, and has triggered a lot of work on domain
adaptation and on developing more robust prepro-
cessing tools. Studies are usually carried out on
large amounts of data, and thus fully manual an-
notation or even error correction of automatically
prelabelled text is not feasible. Given the impor-
tance of identifying noisy annotations in automat-
ically annotated data, it is all the more surpris-
ing that up to now this area of research has been
severely understudied.

This paper addresses this gap and presents a
method for error detection in automatically la-

belled text. As test cases, we use POS tagging and
Named Entity Recognition, both standard prepro-
cessing steps for many NLP applications. How-
ever, our approach is general and can also be ap-
plied to other classification tasks.

Our approach is based on the work of Hovy et
al. (2013) who develop a generative model for es-
timating the reliability of multiple annotators in a
crowdsourcing setting. We adapt the generative
model to the task of finding errors in automatically
labelled data by integrating it in an active learning
(AL) framework. We first show that the approach
of Hovy et al. (2013) on its own is not able to beat
a strong baseline. We then present our integrated
model, in which we impose human supervision on
the generative model through AL, and show that
we are able to achieve substantial improvements
in two different tasks and for two languages.

Our contributions are the following. We provide
a novel approach to error detection that is able to
identify errors in automatically labelled text with
high precision and high recall. To the best of our
knowledge, our method is the first that addresses
this task in an AL framework. We show how AL
can be used to guide an unsupervised generative
model, and we will make our code available to the
research community.1 Our approach works par-
ticularly well in out-of-domain settings where no
annotated training data is yet available.

2 Related work

Quite a bit of work has been devoted to the iden-
tifcation of errors in manually annotated corpora
(Eskin, 2000; van Halteren, 2000; Kveton and
Oliva, 2002; Dickinson and Meurers, 2003; Lofts-
son, 2009; Ambati et al., 2011).

1Our code is available at http://www.cl.
uni-heidelberg.de/˜rehbein/resources.

1160

https://doi.org/10.18653/v1/P17-1107
https://doi.org/10.18653/v1/P17-1107

Several studies have tried to identify trustwor-
thy annotators in crowdsourcing settings (Snow
et al., 2008; Bian et al., 2009), amongst them
the work of Hovy et al. (2013) described in Sec-
tion 3. Others have proposed selective relabelling
strategies when working with non-expert annota-
tors (Sheng et al., 2008; Zhao et al., 2011).

Manual annotations are often inconsistent and
annotation errors can thus be identified by looking
at the variance in the data. In contrast to this, we
focus on detecting errors in automatically labelled
data. This is a much harder problem as the an-
notation errors are systematic and consistent and
therefore hard to detect. Only a few studies have
addressed this problem. One of them is Rocio
et al. (2007) who adapt a multiword unit extrac-
tion algorithm to detect automatic annotation er-
rors in POS tagged corpora. Their semi-automatic
method is geared towards finding (a small number
of) high frequency errors in large datasets, often
caused by tokenisation errors. Their algorithm ex-
tracts sequences that have to be manually sorted
into linguistically sound patterns and erroneous
patterns.

Loftsson (2009) tests several methods for error
detection in POS tagged data, one of them based
on the predictions of an ensemble of 5 POS tag-
gers. Error candidates are those tokens for which
the predictions of all ensemble taggers agree but
that diverge from the manual annotation. This
simple method yields a precision of around 16%
(no. of true positives amongst the error candi-
dates), but no information is given about the re-
call of the method, i.e. how many of the errors in
the corpus have been identified. Rehbein (2014)
extends the work of Loftsson (2009) by training
a CRF classifier on the output of ensemble POS
taggers. This results in a much higher precision,
but with low recall (for a precision in the range of
50-60% they report a recall between 10-20%).

Also related is work that addresses the issue of
learning in the presence of annotation noise (Rei-
dsma and Carletta, 2008; Beigman and Klebanov,
2009; Bekker and Goldberger, 2016). The main
difference to our work lies in its different focus.
While our focus is on identifying errors with the
goal of improving the quality of an existing lan-
guage resource, their main objective is to improve
the accuracy of a machine learning system.

In the next section we describe the approach
of Hovy et al. (2013) and present our adaptation

Algorithm 1 AL with variational inference
Input: classifier predictions A
1: for 1 ... n iterations do
2: procedure GENERATE(A)
3: for i = 1 ... n classifiers do
4: Ti ∼ Uniform
5: for j = 1 ... n instances do
6: Sij ∼ Bernoulli(1− θj)
7: if Sij = 0 then
8: Aij = Ti

9: else
10: Aij ∼Multinomial(ξj)
11: end if
12: end for
13: end for
14: return posterior entropies E
15: end procedure
16: procedure ACTIVELEARNING(A)
17: rank J →max(E)
18: for j = 1 ... n instances do
19: Oracle→ label(j);
20: select random classifier i;
21: update model prediction for i(j);
22: end for
23: end procedure
24: end for

for semi-supervised error detection that combines
Bayesian inference with active learning.

3 Method

3.1 Modelling human annotators

Hovy et al. (2013) develop a generative model
for Multi-Annotator Competence Estimation
(MACE) to determine which annotators to trust
in a crowdsourcing setting (Algorithm 1, lines
2-15). MACE implements a simple graphical
model where the input consists of all annotated
instances I by a set of J annotators. The model
generates the observed annotations A as follows.
The (unobserved) “true” label Ti is sampled from
a uniform prior, based on the assumption that the
annotators always try to predict the correct label
and thus the majority of the annotations should,
more often than not, be correct. The model is
unsupervised, meaning that no information on the
real gold labels is available.

To model each annotator’s behaviour, a binary
variable Sij (also unobserved) is drawn from a
Bernoulli distribution that describes whether an-
notator j is trying to predict the correct label for
instance i or whether s/he is just spamming (a be-
haviour not uncommon in a crowdsourcing set-
ting). If Sij is 0, the “true” label Ti is used to gen-
erate the annotation Aij . If Sij is 1, the predicted
label Aij for instance i comes from a multinomial
distribution with parameter vector ξj .

1161

The model parameter θj can be interpreted as
a “trustworthiness” parameter that describes the
probability that annotator j predicts the correct la-
bel. ξj , on the other hand, contains information
about the actual behaviour of annotator j in the
case that the annotator is not trying to predict the
correct label.

The model parameters are learned by maximiz-
ing the marginal likelihood of the observed data,
using Expectation Maximization (EM) (Dempster
et al., 1977) and Bayesian variational inference.
Bayesian inference is used to provide the model
with priors on the annotators’ behaviour and yields
improved correlations over EM between the model
estimates and the annotators’ proficiency while
keeping accuracy high. For details on the imple-
mentation and parameter settings refer to Hovy et
al. (2013) and Johnson (2007).

We adapt the model of Hovy et al. (2013) and
apply it to the task of error detection in automat-
ically labelled text. To that end, we integrate the
variational model in an active learning (AL) set-
ting, with the goal of identifying as many errors
as possible while keeping the number of instances
to be checked as small as possible. The tasks
we chose in our experiments are POS tagging and
NER, but our approach is general and can easily
be applied to other classification tasks.

3.2 Active learning
Active learning (Cohn et al., 1996) is a semi-
supervised framework where a machine learner
is trained on a small set of carefully selected in-
stances that are informative for the learning pro-
cess, and thus yield the same accuracy as when
training the learner on a larger set of randomly
chosen examples. The main objective is to save
time and money by minimising the need for man-
ual annotation. Many different measures of infor-
mativeness as well as selection strategies for AL
have been proposed in the literature, amongst them
query-by-committee learning (Seung et al., 1992).

The query-by-committee (QBC) approach uses
a classifier ensemble (or committee) and selects
the instances that show maximal disagreement be-
tween the predictions of the committee members.
These instances are assumed to provide new infor-
mation for the learning process, as the classifiers
are most unsure about how to label them. The
selected instances are then presented to the ora-
cle (the human annotator), to be manually disam-
biguated and added to the training data. Then the

classifier committee is retrained on the extended
training set and the next AL iteration starts.

The query-by-committee strategy calls to mind
previous work on error detection in manually la-
belled text that made use of disagreements be-
tween the predictions of a classifier ensemble and
the manually assigned tag, to identify potential an-
notation errors in the data (Loftsson, 2009). This
approach works surprisingly well, and the trade-
off between precision and recall can be balanced
by adding a threshold (i.e. by considering all in-
stances where at least N of the ensemble classi-
fiers disagree with the manually assigned label).
Loftsson (2009) reports a precision of around 16%
for using a committee of five POS taggers to iden-
tify annotation errors (see section 2).

Let us assume we follow this approach and ap-
ply a tagger with an average accuracy of 97% to
a corpus with 100,000 tokens. We can then ex-
pect around 3,000 incorrectly tagged instances in
the data. Trying to identify these with a preci-
sion of 16% means that when looking at 1,000 in-
stances of potential errors, we can only expect to
see around 160 true positive cases, and we would
have to check a large amount of data in order to
correct a substantial part of the annotation noise.
This means that this approach is not feasible for
correcting large automatically annotated data.

It is thus essential to improve precision and re-
call for error detection, and our goal is to minimise
the number of instances that have to be manually
checked while maximizing the number of true er-
rors in the candidate set. In what follows we show
how we can achieve this by using active learning
to guide variational inference for error detection.

3.3 Guiding variational inference with AL

Variational inference is a method from calculus
where the posterior distribution over a set of un-
observed random variables Y is approximated by a
variational distribution Q(Y). We start with some
observed data X (a set of predictions made by our
committee of classifiers) The distribution of the
true labels Y = {y1, y2, ..., yn} is unknown.

As it is too difficult to work with the posterior
p(y|x), we try to approximate it with a much sim-
pler distribution q(y) which models y for each ob-
served x. To that end, we define a family Q of dis-
tributions that are computationally easy to work
with, and pick the q in Q that best approximates
the posterior, where q(y) is called the variational
approximation to the posterior p(y|x).

1162

For computing variational inference, we use the
implementation of Hovy et al. (2013)2 who jointly
optimise p and q using variational EM. They alter-
nate between adjusting q given the current p (E-
step) and adjusting p given the current q (M-step).
In the E-step, the objective is to find the q that
minimises the divergence between the two distri-
butions, D(q||p). In the M-step, we keep q fixed
and try to adjust p. The two steps are repeated until
convergence.

We extend the model for use in AL as follows
(Algorithm 1). We start with the predictions from
a classifier ensemble and learn a variational in-
ference model on the data (lines 2-15). We then
use the posterior entropies according to the current
model, and select the c instances with the highest
entropies for manual validation. These instances
are presented to the oracle who assigns the true la-
bel. We save the predictions made by the human
annotator and, in the next iteration, use them in
the variational E-step as a prior to guide the learn-
ing process. In addition, we randomly pick one of
the classifiers and update its prediction by replac-
ing the classifier’s prediction with the label we ob-
tained from the oracle.3 In the next iteration, we
train the variational model on the updated predic-
tions. By doing this, we also gradually improve
the quality of the input to the variational model.

In a typical AL approach, the main goal is to
improve the classifiers’ accuracy on new data. In
contrast to that, our approach aims at increasing
precision and recall for error detection in auto-
matically labelled data, and thus at minimising the
time needed for manual correction. Please note
that in our model we do not need to retrain the
classifiers used for predicting the labels but only
retrain the model that determines which of the
classifiers’ predictions we can trust. This is cru-
cial as it saves time and makes it easy to integrate
the approach in a realistic scenario with a real hu-
man annotator in the loop.

4 Data and setup

In our first experiment (§5.1) we want to assess the
benefits of our approach for finding POS errors in
standard newspaper text (in-domain setting) where

2MACE is available for download from
http://www.isi.edu/publications/licensed-sw/mace

3We also experimented with updating more than one clas-
sifier, which resulted in lower precision and recall. We take
this as evidence for the importance of keeping the variance in
the predictions high.

we have plenty of training data. For this setting,
we use the English Penn Treebank, annotated with
parts-of-speech, for training and testing.

In the second experiment (§5.2) we apply our
method in an out-of-domain setting where we
want to detect POS errors in text from new do-
mains where no training data is yet available (out-
of-domain setting). For this we use the Penn Tree-
bank as training data, and test our models on data
from the English Web treebank (Bies et al., 2012).

To test our method on a different task and a new
language, we apply it to Named Entity Recog-
nition (NER) (experiment 3, §5.3), using out-of-
domain data from the Europarl corpus.4 The data
was created by Faruqui and Pado (2010) and in-
cludes the first two German Europarl session tran-
scripts, manually annotated with NER labels ac-
cording to the CoNLL 2003 annotation guidelines
(Tjong Kim Sang and De Meulder, 2003).

The first three experiments are simulation stud-
ies. In our last experiment (§5.4), we show that our
method also works well in a real AL scenario with
a human annotator in the loop. For this we use the
out-of-domain setting from the second experiment
and let the annotators correct POS errors in two
web genres (answers, weblogs) from the English
Web treebank.

4.1 Tools for preprocessing
For the POS tagging experiments, we use the fol-
lowing taggers to predict the labels:

• bi-LSTM-aux (Plank et al., 2016)
• HunPos (Halácsy et al., 2007)
• Stanford postagger (Toutanova et al., 2003)
• SVMTool (Giménez and Màrquez, 2004)
• TreeTagger (Schmid, 1999)
• TWeb (Ma et al., 2014)
• Wapiti (Lavergne et al., 2010)

The taggers implement a range of different al-
gorithms, including HMMs, decision trees, SVMs,
maximum entropy and neural networks. We train
the taggers on subsets of 20,000 sentences ex-
tracted from the standard training set of the PTB
(sections 00-18)5 and use the development and test
set (sections 19-21 and 22-24) for testing. The
training times of the taggers vary considerably,
ranging from a few seconds (HunPos) to several

4The NER taggers have been trained on written German
data from the HGC and DeWaC corpora (see §4.1).

5For taggers that use a development set during training,
we also extract the dev data from sections 00-18 of the PTB.

1163

hours. This is a problem for the typical AL setting
where it is crucial not to keep the human annota-
tors waiting for the next instance while the system
retrains. A major advantage of our setup is that we
do not need to retrain the baseline classifiers as we
only use them once, for preprocessing, before the
actual error detection starts.

For the NER experiment, we use tools for
which pretrained models for German are available,
namely GermaNER (Benikova et al., 2015), and
the StanfordNER system (Finkel and Manning,
2009) with models trained on the HGC and the
DeWaC corpus (Baroni et al., 2009; Faruqui and
Padó, 2010).6

4.2 Evaluation measures

We report results for different evaluation measures
to asses the usefulness of our method. First, we re-
port tagger accuracy on the data, obtained during
preprocessing (figure 1). This corresponds to the
accuracy of the labels in the corpus before error
correction (baseline accuracy). Label accuracy
measures the accuracy of the labels in the corpus
after N iterations of error correction. Please note
that we do not retrain the tools used for prepro-
cessing, but assess the quality of the data after N
iterations of manual inspection and correction.

We also report precision and recall for the error
detection itself. True positives (tp) refers to the
number of instances selected for correction during
AL that were actual annotation errors. We com-
pute Error detection (ED) precision as the num-
ber of true positives divided by the number of all
instances selected for error correction duringN it-
erations of AL, and recall as the ratio of correctly
identified errors to all errors in the data.

4.3 Baseline accuracies

Table 1 shows the accuracies for the individual
POS taggers used in experiments 1, 2 and 4.
Please note that this is not a fair comparison as
each tagger was trained on a different randomly
sampled subset of the data and, crucially, we did
not optimise any of the taggers but used default
settings in all experiments.7 The accuracies of the

6To increase the number of annotators we use an older
version of the StanfordNER (2009-01-16) and a newer ver-
sion (2015-12-09), with both the DeWaC and HGC models,
resulting in a total of 5 annotators for the NER task.

7Please note that the success of our method relies on the
variation in the ensemble predictions, and thus improving
the accuracies for preprocessing is not guaranteed to improve
precision for the error detection task.

Annotation
matrix:

c1 c2 ... cn

DT DT ... DT

N NE ... N

V V ... V

...

EVAL:
tagger acc.

Classifiers:
c1, c2, ..., cn

EVAL:
ED precision,

recall, #true pos

EVAL:
label accuracy

QBC VI-AL
entropy posterior entropy

Oracle

Select instances

get label

Output after
N iterations:

update matrix

retrain VI

QBC VI-AL
majority vote VI prediction

cQBC

DT

N

V

...

cV I−AL

DT

NE

V

...

EVAL Evaluation measures used in the experiments

tagger acc Accuracy of preprocessing classifiers on the data.

label acc Label accuracy in the corpus after N iterations of AL.

true pos No. of instances selected for correction that are true errors.

ED prec No. of true pos. / all instances selected for error correction.

recall Correctly identified errors / all errors in the corpus.

Preprocessing

AL for N iterations

Output

Figure 1: Error detection procedure and overview
over different evaluation measures for assessing
the quality of error identification.

baseline taggers vary between 94-97%, with an
average accuracy of 95.8%. The majority base-
line yields better results than the best individual
tagger, with an accuracy of 97.3%. Importantly,
the predictions made by the variational inference
model (MACE) are in the same range as the ma-
jority baseline and thus do not improve over the

1164

Tagger Acc.
bilstm 97.00
hunpos 96.18
stanford 96.93
svmtool 95.86
treetagger 94.35
tweb 95.99
wapiti 94.52
avg. 95.83
majority vote 97.28
MACE 97.27

Table 1: Tagger accuracies for POS taggers
trained on subsamples of the WSJ with 20,000 to-
kens (for the majority vote, ties were broken ran-
domly).

majority vote on the automatically labelled data.
To be able to run the variational inference model

in an AL setting, we limit the size of the test data
(the size of the pre-annotated data to be corrected)
to batches of 5,000 tokens. This allows us to re-
duce the training time of the variational model and
avoid unnecessary waiting times for the oracle.

For NER (experiment 3), in contrast to POS tag-
ging, we have a much smaller label set with only
5 labels (PER, ORG, LOC, MISC, O), and a
highly skewed distribution where most of the in-
stances belong to the negative class (O). To ensure
a sufficient number of NEs in the data, we increase
the batch size and use the whole out-of-domain
testset with 4,395 sentences in the experiment.8

The overall accuracies of the different NER mod-
els are all in the range of 97.7-98.6%. Results for
individual classes, however, vary considerably be-
tween the different models.

5 Results

5.1 Experiment 1: In-domain setting

In our first experiment, we explore the benefits of
our AL approach to error detection in a setting
where we have a reasonably large amount of train-
ing data, and where training and test data come
from the same domain (in-domain setting).

We implement two selection strategies. The
first one is a Query-by-Committee approach (QBC)
where we use the disagreements in the predictions
of our tagger ensemble to identify potential errors.
For each instance i, we compute the entropy over
the predicted labels M by the 7 taggers and select

8This is possible because, given the lower number of class
labels, the training time for the VI-AL model for NER is much
shorter than for the POS data.

QBC VI-AL
N label acc ED prec label acc ED prec
0 97.58 - 97.56 -

100 97.84 13.0 98.42 41.0
200 97.86 7.0 98.90 33.0
300 97.90 5.3 99.16 26.3
400 97.82 3.0 99.26 21.0
500 97.92 3.4 99.34 17.6

Table 2: Label accuracies on 5,000 tokens of
WSJ text afterN iterations, and precision for error
detection (ED prec).

the N instances with the highest entropy (Equa-
tion 1).

H = −
M∑

m=1

P (yi = m) logP (yi = m) (1)

For each selected instance, we then replace the
label predicted by majority vote with the gold la-
bel. Please note that the selected instances might
already have the correct label, and thus the re-
placement does not necessarily increase accuracy
but only does so when the algorithm selects a true
error. We then evaluate the accuracy of the ma-
jority predictions after updating the N instances
ranked highest for entropy9 (figure 1).

We compare the QBC setting to our integrated
approach where we guide the generative model
with human supervision. Here the instances are
selected according to their posterior entropy as as-
signed by the variational model, and after being
disambiguated by the oracle, the predictions of a
randomly selected classifier are updated with the
oracle tags. We run the AL simulation for 500
iterations10 and select one new instance in each
iteration. After replacing the predicted label for
this instance by the gold label, we retrain the vari-
ational model and select the next instance, based
on the new posterior probabilities learned on the
modified dataset. We refer to this setting as VI-
AL.

Table 2 shows POS tag accuracies (lab-acc) af-
ter N iterations of active learning. For the QBC

setting, we see a slight increase in label accuracy
of 0.3% (from 97.6 to 97.9) after manually validat-
ing 10% of the instances in the data. For the first
100 instances, we see a precision of 13% for error

9Please recall that, in contrast to a traditional QBC active
learning approach, we do not retrain the classifiers but only
update the labels predicted by the classifiers.

10We stopped after 500 iterations as this was enough to
detect nearly all errors in the WSJ data.

1165

answer email newsg. review weblog
bilstm 85.5 84.2 86.5 86.9 89.6
hun 88.5 87.4 89.2 89.7 92.2
stan 89.0 88.1 89.9 90.7 93.0
svm 87.4 86.1 88.2 88.8 91.3
tree 86.8 85.6 87.1 88.7 87.4
tweb 88.2 87.1 88.5 89.3 92.0
wapiti 85.2 82.4 84.6 86.5 87.3
avg. 87.2 85.8 87.7 88.7 90.4
major. 87.4 88.8 89.1 90.9 93.8
MACE 87.4 88.6 89.1 91.0 93.9

Table 3: Tagger accuracies on different web gen-
res (trained on the WSJ); avg. accuracy, accu-
racy for majority vote (major.), and accuracy for
MACE.

detection. In the succeeding iterations, the preci-
sion slowly decreases as it gets harder to identify
new errors. We even observe a slight decrease in
label accuracy after 400 iterations that is due to the
fact that ties are broken randomly and thus the vote
for the same instance can vary between iterations.

Looking at the AL setting with variational infer-
ence, we also see the highest precision for identi-
fying errors during the first 100 iterations. How-
ever, the precision for error dection is more than
3 times as high as for QBC (41% vs. 13%), and
we are still able to detect new errors during the
last 100 iterations. This results in an increase in
POS label accuracy in the corpus from 97.56% to
99.34%, a near perfect result.

To find out what error types we were not able to
identify, we manually checked the remaining 33
errors that we failed to detect in the first 500 iter-
ations. Most of those are cases where an adjective
(JJ) was mistaken for a past participle (VBN).

(2) Companies were closedJJ/V BN yesterday

Manning (2011), who presents a categorization
of the type of errors made by a state-of-the-art
POS tagger on the PTB, refers to the error type
in example (2) as underspecified/unclear, a cate-
gory that he applies to instances where “the tag is
underspecified, ambiguous, or unclear in the con-
text”. These cases are also hard to disambiguate
for human annotators, so it is not surprising that
our system failed to detect them.

5.2 Experiment 2: Out-of-domain setting

In the second experiment, we test how our ap-
proach performs in an out-of-domain setting. For
this, we use the English Web treebank (Bies et al.,

N answer email newsg review weblog
0 87.4 88.6 89.1 91.0 93.9

100 88.9 90.0 90.4 92.2 95.2
200 90.3 91.1 91.3 93.4 96.2
300 91.6 92.2 92.0 94.4 97.2
400 92.9 93.3 92.8 95.4 97.5
500 93.9 94.0 93.5 96.0 97.8
600 94.8 94.9 93.9 96.5 97.9
700 95.6 95.6 94.1 96.9 98.0
800 96.2 95.9 94.7 97.3 98.4
900 96.7 96.2 94.9 97.7 98.6

1000 97.0 96.8 95.1 97.9 98.6

Table 4: Increase in POS label accuracy on the
web genres (5,000 tokens) after N iterations of er-
ror correction with VI-AL.

2012), a corpus of over 250,000 words of Eng-
lish weblogs, newsgroups, email, reviews and
question-answers manually annotated for parts-of-
speech and syntax. Our objective is to develop
and test a method for error detection that can also
be applied to out-of-domain scenarios for creat-
ing and improving language resources when no in-
domain training data is available. We thus abstain
from retraining the taggers on the web data and use
the tools and models from experiment 1 (§5.1) as
is, trained on the WSJ. As the English Web tree-
bank uses an extended tagset with additional tags
for URLs and email addresses etc., we allow the
oracle to assign new tags unknown to the prepro-
cessing classifiers. In a traditional AL setting, this
would not be possible, as all class labels have to
be known from the start. In our setting, however,
this can be easily implemented.

For each web genre, we extract samples of
5,000 tokens and run an active learning simulation
with 500 iterations, where in each iteration one
new instance is selected and disambiguated. Af-
ter each iteration, we update the variational model
and the predictions of a randomly selected classi-
fier, as described in Section 5.1.

Table 3 shows the performance of the WSJ-
trained taggers on the web data. As expected, the
results are much lower than the ones from the in-
domain setting. This allows us to explore the be-
haviour of our error detection approach under dif-
ferent conditions, in particular to test our approach
on tag predictions of a lower quality. The last three
rows in Table 3 give the average tagger accuracy,
the accuracy for the majority vote for the ensem-
ble (not to be confused with QBC), and the accu-
racy we get when using the predictions from the
variational model without AL (MACE).

1166

QBC VI-AL
N # tp ED prec rec # tp ED prec rec

100 85 85.0 13.5 75 75.0 11.9
200 148 74.0 23.5 146 73.0 23.2
300 198 66.0 31.4 212 70.7 33.6
400 239 59.7 37.9 278 69.5 44.1
500 282 56.4 44.8 323 64.6 51.3
600 313 52.2 49.7 374 62.3 59.4
700 331 47.3 52.5 412 58.9 65.4
800 355 44.4 56.3 441 55.1 70.0
900 365 40.6 57.9 465 51.7 73.8

1000 371 37.1 58.9 484 48.4 76.8

Table 5: No. of true positives (# tp), precision (ED
prec) and recall for error detection on 5,000 tokens
from the answers set after N iterations.

We can see that the majority baseline often, but
not always succeeds in beating the best individual
tagger. Results for MACE are more or less in the
same range as the majority vote, same as in exper-
iment 1, but do not improve over the baseline.

Next, we employ AL in the out-of-domain set-
ting (Tables 4, 5 and 6). Table 4 shows the increase
in POS label accuracy for the five web genres af-
ter running N iterations of AL with variational in-
ference (VI-AL). Table 5 compares the results of
the two selection strategies, QBC and VI-AL, on
the answers subcorpus after an increasing number
of AL iterations.11 Table 6 completes the picture
by showing results for error detection for all web
genres, for QBC and VI-AL, after inspecting 10%
of the data (500 iterations).

Table 4 shows that using VI-AL for error detec-
tion results in a substantial increase in POS label
accuracy for all genres. VI-AL still detects new
errors after a high number of iterations, without
retraining the ensemble taggers. This is especially
useful in a setting where no labelled target domain
data is yet available.

Table 5 shows the number of true positives
amongst the selected error candidates as well as
precision and recall for error detection for differ-
ent stages of AL on the answers genre. We can
see that during the early learning stages, both se-
lection strategies have a high precision and QBC

beats VI-AL. After 200 iterations it becomes more
difficult to detect new errors, and the precision for
both methods decreases. The decrease, however,
is much slower for VI-AL, leading to higher preci-
sion after the initial rounds of training, and the gap
in results becomes more and more pronounced.

11Due to space restrictions, we can only report detailed re-
sults for one web genre. Results for the other web genres
follow the same trend (see Tables 4 and 6).

QBC VI-AL
tp ED prec rec # tp ED prec rec

answer 282 56.4 44.8 323 64.6 51.3
email 264 52.8 47.1 261 52.2 46.6

newsg. 195 39.0 36.0 214 42.8 39.6
review 227 45.4 49.7 255 51.0 55.8

weblog 166 33.2 54.6 196 39.2 64.5

Table 6: No. of true positives (# tp), precision (ED
prec) and recall for error detection on 5,000 tokens
after 500 iterations on all web genres.

After 600 iterations, VI-AL beats QBC by more
than 10%, thus resulting in a lower number of in-
stances that have to be checked to obtain the same
POS accuracy in the final dataset. Looking at re-
call, we see that by manually inspecting 10% of
the data VI-AL manages to detect more than 50%
of all errors, and after validating 20% of the data,
we are able to eliminate 75% of all errors in the
corpus. In contrast, QBC detects less than 60% of
the annotation errors in the dataset.

In the out-of-domain setting where we start with
low-quality POS predictions, we are able to detect
errors in the data with a much higher precision
than in the in-domain setting, where the number
of errors in the dataset is much lower. Even after
1,000 iterations, the precision for error detection
is close to 50% in the answers data.

Table 6 shows that the same trend appears for
the other web genres, where we observe a substan-
tially higher precision and recall when guiding AL
with variational inference (VI-AL). Only on the
email data are the results below the ones for QBC,
but the gap is small.

5.3 Experiment 3: A new task (and language)
We now want to test if the approach generalises
well to other classification tasks, and also to new
languages. To that end, we apply our approach to
the task of Named Entity Recognition (NER) on
German data (§4).

Table 7 shows results for error detection for
NER. In comparison to the POS experiments, we
observe a much lower recall, for both QBC and VI-
AL. This is due to the larger size of the NER testset
which results in a higher absolute number of er-
rors in the data. Please bear in mind that recall is
computed as the ratio of correctly identified errors
to all errors in the testset (here we have a total of
110,405 tokens in the test set which means that we
identified>35% of all errors by querying less than
1% of the data). Also note that the overall num-
ber of errors is higher in the QBC setting (1,756

1167

QBC VI-AL
N # tp ED prec rec # tp ED prec rec

100 54 54.0 3.1 76 76.0 4.7
200 113 56.5 6.4 155 77.5 9.6
300 162 54.0 9.2 217 72.3 13.4
400 209 52.2 11.9 297 74.2 18.2
500 274 54.8 15.6 352 70.4 22.3
600 341 56.8 19.4 409 68.2 25.5
700 406 58.0 23.1 452 64.6 27.8
800 480 60.0 27.3 483 60.4 29.8
900 551 61.2 31.4 512 56.9 31.9

1000 617 61.7 35.1 585 58.5 35.8
1000 remaining errors:1,139 remaining errors:1,043

Table 7: Error detection results on the GermEval
2014 NER testset afterN iterations (true positives,
ED precision and recall).

errors) than in the VI-AL setting (1,628 errors), as
in the first setting we used a majority vote for gen-
erating the data pool while in the second setting
we relied on the predictions of MACE. For POS
tagging, we did not observe a difference between
the initial data pools (Table 3). For NER, however,
the initial predictions of MACE are better than the
majority vote.

During the first 800 iterations, precision for VI-
AL is much higher than for QBC, but then slowly
decreases. For QBC, however, we see the opposite
trend. Here precision stays in the range of 52-56%
for the first 600 iterations. After that, it slowly
increases, and during the last iterations QBC preci-
sion outperforms VI-AL.

Recall, however, is higher for the VI-AL model,
for all iterations. This means that even if preci-
sion is slightly lower than in the QBC setting af-
ter 800 iterations, it is still better to use the VI-AL

model. For comparison, in the QBC setting we still
have 1,139 errors left in the corpus after 1,000 it-
erations, while for VI-AL the number of errors re-
maining in the data is much lower (1,043).

5.4 Experiment 4: A real-world scenario

In our final experiment, we test our approach in a
real-world scenario with a human annotator in the
loop. To that end, we let two linguistically trained
human annotators correct POS errors identified by
AL. We use the out-of-domain data from experi-
ment 2 (§5.2), specifically the answers and weblog
subcorpora.

We run two VI-AL experiments where the oracle
is presented with new error candidates for 500 it-
erations. The time needed for correction was 135
minutes (annotator 1, answers) and 157 minutes
(annotator 2, weblog) for correcting 500 instances

VI-AL with human annotator
answers weblog

N # tp ED prec rec # tp ED prec rec
100 71 68.0 10.8 62 62.0 20.3
200 103 63.5 20.2 112 56.0 36.7
300 177 58.0 27.6 156 52.0 51.1
400 224 55.3 35.1 170 42.5 55.7
500 259 51.2 40.6 180 36.0 59.0

Table 8: POS results for VI-AL with a human an-
notator on 2 web genres (true positives, precision
and recall for error detection on 5,000 tokens)

each. This includes the time needed to consult the
annotation guidelines, as both annotators had no
prior experience with the extended English Web
treebank guidelines. We expect that the amount of
time needed for correction will decrease when the
annotators become more familiar with the annota-
tion scheme. Results are shown in Table 8.

As expected, precision as well as recall are
lower for the human annotators as compared to
the simulation study (Table 6). However, even
with some annotation noise we were able to detect
more than 40% of all errors in the answers data
and close to 60% of all errors in the weblog cor-
pus, by manually inspecting only 10% of the data.
This results in an increase in POS label accuracy
from 88.8 to 92.5% for the answers corpus and
from 93.9 to 97.5% for the weblogs, which is very
close to the 97.8% we obtained in the simulation
study (Table 4).

6 Conclusions

In the paper, we addressed a severely understud-
ied problem, namely the detection of errors in
automatically annotated language resources. We
present an approach that combines an unsuper-
vised generative model with human supervision in
an AL framework. Using POS tagging and NER as
test cases, we showed that our model can detect er-
rors with high precision and recall, and works es-
pecially well in an out-of-domain setting. Our ap-
proach is language-agnostic and can be used with-
out retraining the classifiers, which saves time and
is of great practical use in an AL setting. We also
showed that combining an unsupervised genera-
tive model with human supervision is superior to
using a query-by-committee strategy for AL.

Our system architecture is generic and can be
applied to any classification task, and we expect
it to be of use in many annotation projects, espe-
cially when dealing with non-standard data or in
out-of-domain settings.

1168

Acknowledgments

This research has been conducted within the Leib-
niz Science Campus “Empirical Linguistics and
Computational Modeling”, funded by the Leibniz
Association under grant no. SAS-2015-IDS-LWC
and by the Ministry of Science, Research, and Art
(MWK) of the state of Baden-Württemberg.

References
Bharat Ram Ambati, Mridul Gupta, Rahul Agarwal,

Samar Husain, and Dipti Misra Sharma. 2011. Er-
ror detection for treebank validation. In Proceedings
of the 9th Workshop on Asian Language Resources.
Chiang Mai, Thailand, ALR9, pages 23–30.

Marco Baroni, Silvia Bernardini, Adriano Ferraresi,
and Eros Zanchetta. 2009. The WaCky wide web:
a collection of very large linguistically processed
web-crawled corpora. Language Resources and
Evaluation 43(3):209–226.

Eyal Beigman and Beata Beigman Klebanov. 2009.
Learning with annotation noise. In Proceedings of
the Joint Conference of the 47th Annual Meeting of
the ACL and the 4th International Joint Conference
on Natural Language Processing of the AFNLP.
Suntec, Singapore, ACL’09, pages 280–287.

Alan Joseph Bekker and Jacob Goldberger. 2016.
Training deep neural-networks based on unreliable
labels. In Proceedings of IEEE International Con-
ference on Acoustic, Speech and Signal Processing.
ICASSP.

Darina Benikova, Seid Muhie Yimam, Prabhakaran
Santhanam, and Chris Biemann. 2015. GermaNER:
Free open German Named Entity Recognition tool.
In Proceedings of the International Conference of
the German Society for Computational Linguistics
and Language Technology (GSCL’15). Essen, Ger-
many, pages 31–38.

Jiang Bian, Yandong Liu, Ding Zhou, Eugene
Agichtein, and Hongyuan Zha. 2009. Learning to
recognize reliable users and content in social media
with coupled mutual reinforcement. In Proceedings
of the 18th International Conference on World Wide
Web. Madrid, Spain, WWW’09, pages 51–60.

Ann Bies, Justin Mott, Colin Warner, and Seth Kulick.
2012. English Web Treebank. Technical Report
LDC2012T13, Philadelphia: Linguistic Data Con-
sortium.

David Cohn, Zoubin Ghahramani, and Michael Jordan.
1996. Active learning with statistical models. Jour-
nal of Artificial Intelligence Research 4:129–145.

A. P. Dempster, N. M. Laird, and D. B. Rubin. 1977.
Maximum likelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical So-
ciety, Series B 39(1):1–38.

Marcus Dickinson and Detmar W. Meurers. 2003. De-
tecting errors in part-of-speech annotation. In Pro-
ceedings of the 10th Conference of the European
Chapter of the Association for Computational Lin-
guistics. Budapest, Hungary, EACL’03, pages 107–
114.

Eleazar Eskin. 2000. Automatic corpus correction with
anomaly detection. In Proceedings of the 1st Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics. NAACL’00,
pages 148–153.

Manaal Faruqui and Sebastian Padó. 2010. Training
and evaluating a German Named Entity Recognizer
with semantic generalization. In Proceedings of the
Conference on Natural Language Processing. KON-
VENS’10, pages 129–133.

Jenny Rose Finkel and Christopher D. Manning. 2009.
Nested Named Entity Recognition. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing. EMNLP’09, pages 141–150.

Jesús Giménez and Lluı́s Màrquez. 2004. SVMTool: A
general POS tagger generator based on Support Vec-
tor Machines. In Proceedings of the Fourth Interna-
tional Conference on Language Resources and Eval-
uation (LREC’04). Lisbon, Portugal, LREC, pages
43–46.

Péter Halácsy, András Kornai, and Csaba Oravecz.
2007. HunPos: An open source trigram tagger. In
Proceedings of the 45th Annual Meeting of the ACL
on Interactive Poster and Demonstration Sessions.
Prague, Czech Republic, ACL’07, pages 209–212.

Dirk Hovy, Taylor Berg-Kirkpatrick, Ashish Vaswani,
and Eduard Hovy. 2013. Learning whom to trust
with MACE. In Proceedings of the 2013 Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies. Atlanta, Georgia, USA,
NAACL-HLT’13, pages 1120–1130.

Mark Johnson. 2007. Why doesn’t EM find good
HMM pos-taggers? In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing. Prague, Czech Republic, EMNLP’07,
pages 296–305.

Pavel Kveton and Karel Oliva. 2002. (Semi-)automatic
detection of errors in pos-tagged corpora. In Pro-
ceedings of the 19th International Conference on
Computational Linguistics. Taipei, Taiwan, COL-
ING’02, pages 1–7.

Thomas Lavergne, Olivier Cappé, and François Yvon.
2010. Practical very large scale CRFs. In Pro-
ceedings the 48th Annual Meeting of the Associa-
tion for Computational Linguistics. Uppsala, Swe-
den, ACL’10, pages 504–513.

Hrafn Loftsson. 2009. Correcting a POS-tagged corpus
using three complementary methods. In Proceed-
ings of the 12th Conference of the European Chapter

1169

of the ACL. Athens, Greece, EACL’09, pages 523–
531.

Ji Ma, Yue Zhang, and Jingbo Zhu. 2014. Tagging the
web: Building a robust web tagger with neural net-
work. In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics. Bal-
timore, Maryland, ACL’14, pages 144–154.

Christopher D. Manning. 2011. Part-of-speech tagging
from 97linguistics? In Proceedings of the 12th In-
ternational Conference on Computational Linguis-
tics and Intelligent Text Processing. Tokyo, Japan,
CICLing’11, pages 171–189.

Barbara Plank, Anders Søgaard, and Yoav Goldberg.
2016. Multilingual part-of-speech tagging with
bidirectional long short-term memory models and
auxiliary loss. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics. Berlin, Germany, ACL’16, pages 412–418.

Ines Rehbein. 2014. POS error detection in automati-
cally annotated corpora. In Proceedings of the 8th
Linguistic Annotation Workshop. LAW VIII, pages
20–28.

Dennis Reidsma and Jean Carletta. 2008. Reliability
measurement without limits. Computational Lin-
guistics 34(3):319–326.

Vitor Rocio, Joaquim Silva, and Gabriel Lopes. 2007.
Detection of strange and wrong automatic part-
of-speech tagging. In Proceedings of the Arit-
ficial Intelligence 13th Portuguese Conference on
Progress in Artificial Intelligence. Guimarães, Por-
tugal, EPIA07, pages 683–690.

Helmut Schmid. 1999. Improvements in part-of-
speech tagging with an application to German. In
Susan Armstrong, Kenneth Church, Pierre Isabelle,
Sandra Manzi, Evelyne Tzoukermann, and David
Yarowsky, editors, Natural Language Processing
Using Very Large Corpora, Kluwer Academic Pub-
lishers, Dordrecht, volume 11 of Text, Speech and
Language Processing, pages 13–26.

H. Sebastian Seung, Manfred Opper, and Haim Som-
polinsky. 1992. Query by committee. In Proceed-
ings of the Fifth Annual Workshop on Computational
Learning Theory. Pittsburgh, Pennsylvania, USA,
COLT’92, pages 287–294.

Victor Sheng, Foster Provost, and Panagiotis G. Ipeiro-
tis. 2008. Get another label? Improving data qual-
ity and data mining using multiple, noisy labelers.
In Proceedings of the 14th ACM SIGKDD interna-
tional conference on Knowledge discovery and data
mining. KDD’08, pages 614–622.

Rion Snow, Brendan O’Connor, Daniel Jurafsky, and
Andrew Y. Ng. 2008. Cheap and fast—but is it
good?: Evaluating non-expert annotations for natu-
ral language tasks. In Proceedings of the Confer-
ence on Empirical Methods in Natural Language
Processing. Honolulu, Hawaii, EMNLP’08, pages
254–263.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Walter Daelemans and Miles Osborne, editors, Pro-
ceedings of the SIGNLL Conference on Compu-
tational Natural Language Learning. Edmonton,
Canada, CoNLL’03, pages 142–147.

Kristina Toutanova, Dan Klein, Christopher D. Man-
ning, and Yoram Singer. 2003. Feature-rich part-of-
speech tagging with a cyclic dependency network.
In Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics on Human Language Technology
- Volume 1. Edmonton, Canada, NAACL’03, pages
173–180.

Hans van Halteren. 2000. The detection of incon-
sistency in manually tagged text. In Proceedings
of the COLING-2000 Workshop on Linguistically
Interpreted Corpora. Centre Universitaire, Luxem-
bourg, pages 48–55.

Liyue Zhao, Gita Sukthankar, and Rahul Sukthankar.
2011. Incremental relabeling for active learning
with noisy crowdsourced annotations. In Privacy,
Security, Risk and Trust (PASSAT) and 2011 IEEE
Third Inernational Conference on Social Comput-
ing. PASSAT and SocialCom, pages 728–733.

1170

	Detecting annotation noise in automatically labelled data

