@inproceedings{xu-etal-2017-local,
title = "A Local Detection Approach for Named Entity Recognition and Mention Detection",
author = "Xu, Mingbin and
Jiang, Hui and
Watcharawittayakul, Sedtawut",
editor = "Barzilay, Regina and
Kan, Min-Yen",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P17-1114",
doi = "10.18653/v1/P17-1114",
pages = "1237--1247",
abstract = "In this paper, we study a novel approach for named entity recognition (NER) and mention detection (MD) in natural language processing. Instead of treating NER as a sequence labeling problem, we propose a new local detection approach, which relies on the recent fixed-size ordinally forgetting encoding (FOFE) method to fully encode each sentence fragment and its left/right contexts into a fixed-size representation. Subsequently, a simple feedforward neural network (FFNN) is learned to either reject or predict entity label for each individual text fragment. The proposed method has been evaluated in several popular NER and MD tasks, including CoNLL 2003 NER task and TAC-KBP2015 and TAC-KBP2016 Tri-lingual Entity Discovery and Linking (EDL) tasks. Our method has yielded pretty strong performance in all of these examined tasks. This local detection approach has shown many advantages over the traditional sequence labeling methods.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="xu-etal-2017-local">
<titleInfo>
<title>A Local Detection Approach for Named Entity Recognition and Mention Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mingbin</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hui</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sedtawut</namePart>
<namePart type="family">Watcharawittayakul</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Regina</namePart>
<namePart type="family">Barzilay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we study a novel approach for named entity recognition (NER) and mention detection (MD) in natural language processing. Instead of treating NER as a sequence labeling problem, we propose a new local detection approach, which relies on the recent fixed-size ordinally forgetting encoding (FOFE) method to fully encode each sentence fragment and its left/right contexts into a fixed-size representation. Subsequently, a simple feedforward neural network (FFNN) is learned to either reject or predict entity label for each individual text fragment. The proposed method has been evaluated in several popular NER and MD tasks, including CoNLL 2003 NER task and TAC-KBP2015 and TAC-KBP2016 Tri-lingual Entity Discovery and Linking (EDL) tasks. Our method has yielded pretty strong performance in all of these examined tasks. This local detection approach has shown many advantages over the traditional sequence labeling methods.</abstract>
<identifier type="citekey">xu-etal-2017-local</identifier>
<identifier type="doi">10.18653/v1/P17-1114</identifier>
<location>
<url>https://aclanthology.org/P17-1114</url>
</location>
<part>
<date>2017-07</date>
<extent unit="page">
<start>1237</start>
<end>1247</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Local Detection Approach for Named Entity Recognition and Mention Detection
%A Xu, Mingbin
%A Jiang, Hui
%A Watcharawittayakul, Sedtawut
%Y Barzilay, Regina
%Y Kan, Min-Yen
%S Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2017
%8 July
%I Association for Computational Linguistics
%C Vancouver, Canada
%F xu-etal-2017-local
%X In this paper, we study a novel approach for named entity recognition (NER) and mention detection (MD) in natural language processing. Instead of treating NER as a sequence labeling problem, we propose a new local detection approach, which relies on the recent fixed-size ordinally forgetting encoding (FOFE) method to fully encode each sentence fragment and its left/right contexts into a fixed-size representation. Subsequently, a simple feedforward neural network (FFNN) is learned to either reject or predict entity label for each individual text fragment. The proposed method has been evaluated in several popular NER and MD tasks, including CoNLL 2003 NER task and TAC-KBP2015 and TAC-KBP2016 Tri-lingual Entity Discovery and Linking (EDL) tasks. Our method has yielded pretty strong performance in all of these examined tasks. This local detection approach has shown many advantages over the traditional sequence labeling methods.
%R 10.18653/v1/P17-1114
%U https://aclanthology.org/P17-1114
%U https://doi.org/10.18653/v1/P17-1114
%P 1237-1247
Markdown (Informal)
[A Local Detection Approach for Named Entity Recognition and Mention Detection](https://aclanthology.org/P17-1114) (Xu et al., ACL 2017)
ACL