@inproceedings{akasaki-kaji-2017-chat,
title = "Chat Detection in an Intelligent Assistant: Combining Task-oriented and Non-task-oriented Spoken Dialogue Systems",
author = "Akasaki, Satoshi and
Kaji, Nobuhiro",
editor = "Barzilay, Regina and
Kan, Min-Yen",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P17-1120",
doi = "10.18653/v1/P17-1120",
pages = "1308--1319",
abstract = "Recently emerged intelligent assistants on smartphones and home electronics (e.g., Siri and Alexa) can be seen as novel hybrids of domain-specific task-oriented spoken dialogue systems and open-domain non-task-oriented ones. To realize such hybrid dialogue systems, this paper investigates determining whether or not a user is going to have a chat with the system. To address the lack of benchmark datasets for this task, we construct a new dataset consisting of 15,160 utterances collected from the real log data of a commercial intelligent assistant (and will release the dataset to facilitate future research activity). In addition, we investigate using tweets and Web search queries for handling open-domain user utterances, which characterize the task of chat detection. Experimental experiments demonstrated that, while simple supervised methods are effective, the use of the tweets and search queries further improves the F$_1$-score from 86.21 to 87.53.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="akasaki-kaji-2017-chat">
<titleInfo>
<title>Chat Detection in an Intelligent Assistant: Combining Task-oriented and Non-task-oriented Spoken Dialogue Systems</title>
</titleInfo>
<name type="personal">
<namePart type="given">Satoshi</namePart>
<namePart type="family">Akasaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nobuhiro</namePart>
<namePart type="family">Kaji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Regina</namePart>
<namePart type="family">Barzilay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Recently emerged intelligent assistants on smartphones and home electronics (e.g., Siri and Alexa) can be seen as novel hybrids of domain-specific task-oriented spoken dialogue systems and open-domain non-task-oriented ones. To realize such hybrid dialogue systems, this paper investigates determining whether or not a user is going to have a chat with the system. To address the lack of benchmark datasets for this task, we construct a new dataset consisting of 15,160 utterances collected from the real log data of a commercial intelligent assistant (and will release the dataset to facilitate future research activity). In addition, we investigate using tweets and Web search queries for handling open-domain user utterances, which characterize the task of chat detection. Experimental experiments demonstrated that, while simple supervised methods are effective, the use of the tweets and search queries further improves the F₁-score from 86.21 to 87.53.</abstract>
<identifier type="citekey">akasaki-kaji-2017-chat</identifier>
<identifier type="doi">10.18653/v1/P17-1120</identifier>
<location>
<url>https://aclanthology.org/P17-1120</url>
</location>
<part>
<date>2017-07</date>
<extent unit="page">
<start>1308</start>
<end>1319</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Chat Detection in an Intelligent Assistant: Combining Task-oriented and Non-task-oriented Spoken Dialogue Systems
%A Akasaki, Satoshi
%A Kaji, Nobuhiro
%Y Barzilay, Regina
%Y Kan, Min-Yen
%S Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2017
%8 July
%I Association for Computational Linguistics
%C Vancouver, Canada
%F akasaki-kaji-2017-chat
%X Recently emerged intelligent assistants on smartphones and home electronics (e.g., Siri and Alexa) can be seen as novel hybrids of domain-specific task-oriented spoken dialogue systems and open-domain non-task-oriented ones. To realize such hybrid dialogue systems, this paper investigates determining whether or not a user is going to have a chat with the system. To address the lack of benchmark datasets for this task, we construct a new dataset consisting of 15,160 utterances collected from the real log data of a commercial intelligent assistant (and will release the dataset to facilitate future research activity). In addition, we investigate using tweets and Web search queries for handling open-domain user utterances, which characterize the task of chat detection. Experimental experiments demonstrated that, while simple supervised methods are effective, the use of the tweets and search queries further improves the F₁-score from 86.21 to 87.53.
%R 10.18653/v1/P17-1120
%U https://aclanthology.org/P17-1120
%U https://doi.org/10.18653/v1/P17-1120
%P 1308-1319
Markdown (Informal)
[Chat Detection in an Intelligent Assistant: Combining Task-oriented and Non-task-oriented Spoken Dialogue Systems](https://aclanthology.org/P17-1120) (Akasaki & Kaji, ACL 2017)
ACL