@inproceedings{zhang-etal-2017-prior,
title = "Prior Knowledge Integration for Neural Machine Translation using Posterior Regularization",
author = "Zhang, Jiacheng and
Liu, Yang and
Luan, Huanbo and
Xu, Jingfang and
Sun, Maosong",
editor = "Barzilay, Regina and
Kan, Min-Yen",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P17-1139/",
doi = "10.18653/v1/P17-1139",
pages = "1514--1523",
abstract = "Although neural machine translation has made significant progress recently, how to integrate multiple overlapping, arbitrary prior knowledge sources remains a challenge. In this work, we propose to use posterior regularization to provide a general framework for integrating prior knowledge into neural machine translation. We represent prior knowledge sources as features in a log-linear model, which guides the learning processing of the neural translation model. Experiments on Chinese-English dataset show that our approach leads to significant improvements."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-etal-2017-prior">
<titleInfo>
<title>Prior Knowledge Integration for Neural Machine Translation using Posterior Regularization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jiacheng</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Huanbo</namePart>
<namePart type="family">Luan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jingfang</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maosong</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Regina</namePart>
<namePart type="family">Barzilay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Although neural machine translation has made significant progress recently, how to integrate multiple overlapping, arbitrary prior knowledge sources remains a challenge. In this work, we propose to use posterior regularization to provide a general framework for integrating prior knowledge into neural machine translation. We represent prior knowledge sources as features in a log-linear model, which guides the learning processing of the neural translation model. Experiments on Chinese-English dataset show that our approach leads to significant improvements.</abstract>
<identifier type="citekey">zhang-etal-2017-prior</identifier>
<identifier type="doi">10.18653/v1/P17-1139</identifier>
<location>
<url>https://aclanthology.org/P17-1139/</url>
</location>
<part>
<date>2017-07</date>
<extent unit="page">
<start>1514</start>
<end>1523</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Prior Knowledge Integration for Neural Machine Translation using Posterior Regularization
%A Zhang, Jiacheng
%A Liu, Yang
%A Luan, Huanbo
%A Xu, Jingfang
%A Sun, Maosong
%Y Barzilay, Regina
%Y Kan, Min-Yen
%S Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2017
%8 July
%I Association for Computational Linguistics
%C Vancouver, Canada
%F zhang-etal-2017-prior
%X Although neural machine translation has made significant progress recently, how to integrate multiple overlapping, arbitrary prior knowledge sources remains a challenge. In this work, we propose to use posterior regularization to provide a general framework for integrating prior knowledge into neural machine translation. We represent prior knowledge sources as features in a log-linear model, which guides the learning processing of the neural translation model. Experiments on Chinese-English dataset show that our approach leads to significant improvements.
%R 10.18653/v1/P17-1139
%U https://aclanthology.org/P17-1139/
%U https://doi.org/10.18653/v1/P17-1139
%P 1514-1523
Markdown (Informal)
[Prior Knowledge Integration for Neural Machine Translation using Posterior Regularization](https://aclanthology.org/P17-1139/) (Zhang et al., ACL 2017)
ACL