@inproceedings{jurgens-etal-2017-incorporating,
title = "Incorporating Dialectal Variability for Socially Equitable Language Identification",
author = "Jurgens, David and
Tsvetkov, Yulia and
Jurafsky, Dan",
editor = "Barzilay, Regina and
Kan, Min-Yen",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P17-2009",
doi = "10.18653/v1/P17-2009",
pages = "51--57",
abstract = "Language identification (LID) is a critical first step for processing multilingual text. Yet most LID systems are not designed to handle the linguistic diversity of global platforms like Twitter, where local dialects and rampant code-switching lead language classifiers to systematically miss minority dialect speakers and multilingual speakers. We propose a new dataset and a character-based sequence-to-sequence model for LID designed to support dialectal and multilingual language varieties. Our model achieves state-of-the-art performance on multiple LID benchmarks. Furthermore, in a case study using Twitter for health tracking, our method substantially increases the availability of texts written by underrepresented populations, enabling the development of {``}socially inclusive{''} NLP tools.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="jurgens-etal-2017-incorporating">
<titleInfo>
<title>Incorporating Dialectal Variability for Socially Equitable Language Identification</title>
</titleInfo>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Jurgens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulia</namePart>
<namePart type="family">Tsvetkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Jurafsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Regina</namePart>
<namePart type="family">Barzilay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Language identification (LID) is a critical first step for processing multilingual text. Yet most LID systems are not designed to handle the linguistic diversity of global platforms like Twitter, where local dialects and rampant code-switching lead language classifiers to systematically miss minority dialect speakers and multilingual speakers. We propose a new dataset and a character-based sequence-to-sequence model for LID designed to support dialectal and multilingual language varieties. Our model achieves state-of-the-art performance on multiple LID benchmarks. Furthermore, in a case study using Twitter for health tracking, our method substantially increases the availability of texts written by underrepresented populations, enabling the development of “socially inclusive” NLP tools.</abstract>
<identifier type="citekey">jurgens-etal-2017-incorporating</identifier>
<identifier type="doi">10.18653/v1/P17-2009</identifier>
<location>
<url>https://aclanthology.org/P17-2009</url>
</location>
<part>
<date>2017-07</date>
<extent unit="page">
<start>51</start>
<end>57</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Incorporating Dialectal Variability for Socially Equitable Language Identification
%A Jurgens, David
%A Tsvetkov, Yulia
%A Jurafsky, Dan
%Y Barzilay, Regina
%Y Kan, Min-Yen
%S Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2017
%8 July
%I Association for Computational Linguistics
%C Vancouver, Canada
%F jurgens-etal-2017-incorporating
%X Language identification (LID) is a critical first step for processing multilingual text. Yet most LID systems are not designed to handle the linguistic diversity of global platforms like Twitter, where local dialects and rampant code-switching lead language classifiers to systematically miss minority dialect speakers and multilingual speakers. We propose a new dataset and a character-based sequence-to-sequence model for LID designed to support dialectal and multilingual language varieties. Our model achieves state-of-the-art performance on multiple LID benchmarks. Furthermore, in a case study using Twitter for health tracking, our method substantially increases the availability of texts written by underrepresented populations, enabling the development of “socially inclusive” NLP tools.
%R 10.18653/v1/P17-2009
%U https://aclanthology.org/P17-2009
%U https://doi.org/10.18653/v1/P17-2009
%P 51-57
Markdown (Informal)
[Incorporating Dialectal Variability for Socially Equitable Language Identification](https://aclanthology.org/P17-2009) (Jurgens et al., ACL 2017)
ACL