@inproceedings{jagfeld-etal-2017-evaluating,
title = "Evaluating Compound Splitters Extrinsically with Textual Entailment",
author = "Jagfeld, Glorianna and
Ziering, Patrick and
van der Plas, Lonneke",
editor = "Barzilay, Regina and
Kan, Min-Yen",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P17-2010",
doi = "10.18653/v1/P17-2010",
pages = "58--63",
abstract = "Traditionally, compound splitters are evaluated intrinsically on gold-standard data or extrinsically on the task of statistical machine translation. We explore a novel way for the extrinsic evaluation of compound splitters, namely recognizing textual entailment. Compound splitting has great potential for this novel task that is both transparent and well-defined. Moreover, we show that it addresses certain aspects that are either ignored in intrinsic evaluations or compensated for by taskinternal mechanisms in statistical machine translation. We show significant improvements using different compound splitting methods on a German textual entailment dataset.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="jagfeld-etal-2017-evaluating">
<titleInfo>
<title>Evaluating Compound Splitters Extrinsically with Textual Entailment</title>
</titleInfo>
<name type="personal">
<namePart type="given">Glorianna</namePart>
<namePart type="family">Jagfeld</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Patrick</namePart>
<namePart type="family">Ziering</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lonneke</namePart>
<namePart type="family">van der Plas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Regina</namePart>
<namePart type="family">Barzilay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Traditionally, compound splitters are evaluated intrinsically on gold-standard data or extrinsically on the task of statistical machine translation. We explore a novel way for the extrinsic evaluation of compound splitters, namely recognizing textual entailment. Compound splitting has great potential for this novel task that is both transparent and well-defined. Moreover, we show that it addresses certain aspects that are either ignored in intrinsic evaluations or compensated for by taskinternal mechanisms in statistical machine translation. We show significant improvements using different compound splitting methods on a German textual entailment dataset.</abstract>
<identifier type="citekey">jagfeld-etal-2017-evaluating</identifier>
<identifier type="doi">10.18653/v1/P17-2010</identifier>
<location>
<url>https://aclanthology.org/P17-2010</url>
</location>
<part>
<date>2017-07</date>
<extent unit="page">
<start>58</start>
<end>63</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Evaluating Compound Splitters Extrinsically with Textual Entailment
%A Jagfeld, Glorianna
%A Ziering, Patrick
%A van der Plas, Lonneke
%Y Barzilay, Regina
%Y Kan, Min-Yen
%S Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2017
%8 July
%I Association for Computational Linguistics
%C Vancouver, Canada
%F jagfeld-etal-2017-evaluating
%X Traditionally, compound splitters are evaluated intrinsically on gold-standard data or extrinsically on the task of statistical machine translation. We explore a novel way for the extrinsic evaluation of compound splitters, namely recognizing textual entailment. Compound splitting has great potential for this novel task that is both transparent and well-defined. Moreover, we show that it addresses certain aspects that are either ignored in intrinsic evaluations or compensated for by taskinternal mechanisms in statistical machine translation. We show significant improvements using different compound splitting methods on a German textual entailment dataset.
%R 10.18653/v1/P17-2010
%U https://aclanthology.org/P17-2010
%U https://doi.org/10.18653/v1/P17-2010
%P 58-63
Markdown (Informal)
[Evaluating Compound Splitters Extrinsically with Textual Entailment](https://aclanthology.org/P17-2010) (Jagfeld et al., ACL 2017)
ACL