@inproceedings{kazi-thompson-2017-implicitly,
title = "Implicitly-Defined Neural Networks for Sequence Labeling",
author = "Kazi, Michaeel and
Thompson, Brian",
editor = "Barzilay, Regina and
Kan, Min-Yen",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P17-2027/",
doi = "10.18653/v1/P17-2027",
pages = "172--177",
abstract = "In this work, we propose a novel, implicitly-defined neural network architecture and describe a method to compute its components. The proposed architecture forgoes the causality assumption used to formulate recurrent neural networks and instead couples the hidden states of the network, allowing improvement on problems with complex, long-distance dependencies. Initial experiments demonstrate the new architecture outperforms both the Stanford Parser and baseline bidirectional networks on the Penn Treebank Part-of-Speech tagging task and a baseline bidirectional network on an additional artificial random biased walk task."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kazi-thompson-2017-implicitly">
<titleInfo>
<title>Implicitly-Defined Neural Networks for Sequence Labeling</title>
</titleInfo>
<name type="personal">
<namePart type="given">Michaeel</namePart>
<namePart type="family">Kazi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Brian</namePart>
<namePart type="family">Thompson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Regina</namePart>
<namePart type="family">Barzilay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this work, we propose a novel, implicitly-defined neural network architecture and describe a method to compute its components. The proposed architecture forgoes the causality assumption used to formulate recurrent neural networks and instead couples the hidden states of the network, allowing improvement on problems with complex, long-distance dependencies. Initial experiments demonstrate the new architecture outperforms both the Stanford Parser and baseline bidirectional networks on the Penn Treebank Part-of-Speech tagging task and a baseline bidirectional network on an additional artificial random biased walk task.</abstract>
<identifier type="citekey">kazi-thompson-2017-implicitly</identifier>
<identifier type="doi">10.18653/v1/P17-2027</identifier>
<location>
<url>https://aclanthology.org/P17-2027/</url>
</location>
<part>
<date>2017-07</date>
<extent unit="page">
<start>172</start>
<end>177</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Implicitly-Defined Neural Networks for Sequence Labeling
%A Kazi, Michaeel
%A Thompson, Brian
%Y Barzilay, Regina
%Y Kan, Min-Yen
%S Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2017
%8 July
%I Association for Computational Linguistics
%C Vancouver, Canada
%F kazi-thompson-2017-implicitly
%X In this work, we propose a novel, implicitly-defined neural network architecture and describe a method to compute its components. The proposed architecture forgoes the causality assumption used to formulate recurrent neural networks and instead couples the hidden states of the network, allowing improvement on problems with complex, long-distance dependencies. Initial experiments demonstrate the new architecture outperforms both the Stanford Parser and baseline bidirectional networks on the Penn Treebank Part-of-Speech tagging task and a baseline bidirectional network on an additional artificial random biased walk task.
%R 10.18653/v1/P17-2027
%U https://aclanthology.org/P17-2027/
%U https://doi.org/10.18653/v1/P17-2027
%P 172-177
Markdown (Informal)
[Implicitly-Defined Neural Networks for Sequence Labeling](https://aclanthology.org/P17-2027/) (Kazi & Thompson, ACL 2017)
ACL
- Michaeel Kazi and Brian Thompson. 2017. Implicitly-Defined Neural Networks for Sequence Labeling. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 172–177, Vancouver, Canada. Association for Computational Linguistics.