@inproceedings{hua-wang-2017-understanding,
title = "Understanding and Detecting Supporting Arguments of Diverse Types",
author = "Hua, Xinyu and
Wang, Lu",
editor = "Barzilay, Regina and
Kan, Min-Yen",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P17-2032",
doi = "10.18653/v1/P17-2032",
pages = "203--208",
abstract = "We investigate the problem of sentence-level supporting argument detection from relevant documents for user-specified claims. A dataset containing claims and associated citation articles is collected from online debate website idebate.org. We then manually label sentence-level supporting arguments from the documents along with their types as study, factual, opinion, or reasoning. We further characterize arguments of different types, and explore whether leveraging type information can facilitate the supporting arguments detection task. Experimental results show that LambdaMART (Burges, 2010) ranker that uses features informed by argument types yields better performance than the same ranker trained without type information.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hua-wang-2017-understanding">
<titleInfo>
<title>Understanding and Detecting Supporting Arguments of Diverse Types</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xinyu</namePart>
<namePart type="family">Hua</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Regina</namePart>
<namePart type="family">Barzilay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We investigate the problem of sentence-level supporting argument detection from relevant documents for user-specified claims. A dataset containing claims and associated citation articles is collected from online debate website idebate.org. We then manually label sentence-level supporting arguments from the documents along with their types as study, factual, opinion, or reasoning. We further characterize arguments of different types, and explore whether leveraging type information can facilitate the supporting arguments detection task. Experimental results show that LambdaMART (Burges, 2010) ranker that uses features informed by argument types yields better performance than the same ranker trained without type information.</abstract>
<identifier type="citekey">hua-wang-2017-understanding</identifier>
<identifier type="doi">10.18653/v1/P17-2032</identifier>
<location>
<url>https://aclanthology.org/P17-2032</url>
</location>
<part>
<date>2017-07</date>
<extent unit="page">
<start>203</start>
<end>208</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Understanding and Detecting Supporting Arguments of Diverse Types
%A Hua, Xinyu
%A Wang, Lu
%Y Barzilay, Regina
%Y Kan, Min-Yen
%S Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2017
%8 July
%I Association for Computational Linguistics
%C Vancouver, Canada
%F hua-wang-2017-understanding
%X We investigate the problem of sentence-level supporting argument detection from relevant documents for user-specified claims. A dataset containing claims and associated citation articles is collected from online debate website idebate.org. We then manually label sentence-level supporting arguments from the documents along with their types as study, factual, opinion, or reasoning. We further characterize arguments of different types, and explore whether leveraging type information can facilitate the supporting arguments detection task. Experimental results show that LambdaMART (Burges, 2010) ranker that uses features informed by argument types yields better performance than the same ranker trained without type information.
%R 10.18653/v1/P17-2032
%U https://aclanthology.org/P17-2032
%U https://doi.org/10.18653/v1/P17-2032
%P 203-208
Markdown (Informal)
[Understanding and Detecting Supporting Arguments of Diverse Types](https://aclanthology.org/P17-2032) (Hua & Wang, ACL 2017)
ACL