@inproceedings{tourille-etal-2017-neural,
title = "Neural Architecture for Temporal Relation Extraction: A {B}i-{LSTM} Approach for Detecting Narrative Containers",
author = "Tourille, Julien and
Ferret, Olivier and
N{\'e}v{\'e}ol, Aur{\'e}lie and
Tannier, Xavier",
editor = "Barzilay, Regina and
Kan, Min-Yen",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P17-2035/",
doi = "10.18653/v1/P17-2035",
pages = "224--230",
abstract = "We present a neural architecture for containment relation identification between medical events and/or temporal expressions. We experiment on a corpus of de-identified clinical notes in English from the Mayo Clinic, namely the THYME corpus. Our model achieves an F-measure of 0.613 and outperforms the best result reported on this corpus to date."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tourille-etal-2017-neural">
<titleInfo>
<title>Neural Architecture for Temporal Relation Extraction: A Bi-LSTM Approach for Detecting Narrative Containers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Julien</namePart>
<namePart type="family">Tourille</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Olivier</namePart>
<namePart type="family">Ferret</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurélie</namePart>
<namePart type="family">Névéol</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xavier</namePart>
<namePart type="family">Tannier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Regina</namePart>
<namePart type="family">Barzilay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a neural architecture for containment relation identification between medical events and/or temporal expressions. We experiment on a corpus of de-identified clinical notes in English from the Mayo Clinic, namely the THYME corpus. Our model achieves an F-measure of 0.613 and outperforms the best result reported on this corpus to date.</abstract>
<identifier type="citekey">tourille-etal-2017-neural</identifier>
<identifier type="doi">10.18653/v1/P17-2035</identifier>
<location>
<url>https://aclanthology.org/P17-2035/</url>
</location>
<part>
<date>2017-07</date>
<extent unit="page">
<start>224</start>
<end>230</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Neural Architecture for Temporal Relation Extraction: A Bi-LSTM Approach for Detecting Narrative Containers
%A Tourille, Julien
%A Ferret, Olivier
%A Névéol, Aurélie
%A Tannier, Xavier
%Y Barzilay, Regina
%Y Kan, Min-Yen
%S Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2017
%8 July
%I Association for Computational Linguistics
%C Vancouver, Canada
%F tourille-etal-2017-neural
%X We present a neural architecture for containment relation identification between medical events and/or temporal expressions. We experiment on a corpus of de-identified clinical notes in English from the Mayo Clinic, namely the THYME corpus. Our model achieves an F-measure of 0.613 and outperforms the best result reported on this corpus to date.
%R 10.18653/v1/P17-2035
%U https://aclanthology.org/P17-2035/
%U https://doi.org/10.18653/v1/P17-2035
%P 224-230
Markdown (Informal)
[Neural Architecture for Temporal Relation Extraction: A Bi-LSTM Approach for Detecting Narrative Containers](https://aclanthology.org/P17-2035/) (Tourille et al., ACL 2017)
ACL