@inproceedings{wolfe-etal-2017-pocket,
title = "Pocket Knowledge Base Population",
author = "Wolfe, Travis and
Dredze, Mark and
Van Durme, Benjamin",
editor = "Barzilay, Regina and
Kan, Min-Yen",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P17-2048",
doi = "10.18653/v1/P17-2048",
pages = "305--310",
abstract = "Existing Knowledge Base Population methods extract relations from a closed relational schema with limited coverage leading to sparse KBs. We propose Pocket Knowledge Base Population (PKBP), the task of dynamically constructing a KB of entities related to a query and finding the best characterization of relationships between entities. We describe novel Open Information Extraction methods which leverage the PKB to find informative trigger words. We evaluate using existing KBP shared-task data as well anew annotations collected for this work. Our methods produce high quality KB from just text with many more entities and relationships than existing KBP systems.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wolfe-etal-2017-pocket">
<titleInfo>
<title>Pocket Knowledge Base Population</title>
</titleInfo>
<name type="personal">
<namePart type="given">Travis</namePart>
<namePart type="family">Wolfe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mark</namePart>
<namePart type="family">Dredze</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Benjamin</namePart>
<namePart type="family">Van Durme</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Regina</namePart>
<namePart type="family">Barzilay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Existing Knowledge Base Population methods extract relations from a closed relational schema with limited coverage leading to sparse KBs. We propose Pocket Knowledge Base Population (PKBP), the task of dynamically constructing a KB of entities related to a query and finding the best characterization of relationships between entities. We describe novel Open Information Extraction methods which leverage the PKB to find informative trigger words. We evaluate using existing KBP shared-task data as well anew annotations collected for this work. Our methods produce high quality KB from just text with many more entities and relationships than existing KBP systems.</abstract>
<identifier type="citekey">wolfe-etal-2017-pocket</identifier>
<identifier type="doi">10.18653/v1/P17-2048</identifier>
<location>
<url>https://aclanthology.org/P17-2048</url>
</location>
<part>
<date>2017-07</date>
<extent unit="page">
<start>305</start>
<end>310</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Pocket Knowledge Base Population
%A Wolfe, Travis
%A Dredze, Mark
%A Van Durme, Benjamin
%Y Barzilay, Regina
%Y Kan, Min-Yen
%S Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2017
%8 July
%I Association for Computational Linguistics
%C Vancouver, Canada
%F wolfe-etal-2017-pocket
%X Existing Knowledge Base Population methods extract relations from a closed relational schema with limited coverage leading to sparse KBs. We propose Pocket Knowledge Base Population (PKBP), the task of dynamically constructing a KB of entities related to a query and finding the best characterization of relationships between entities. We describe novel Open Information Extraction methods which leverage the PKB to find informative trigger words. We evaluate using existing KBP shared-task data as well anew annotations collected for this work. Our methods produce high quality KB from just text with many more entities and relationships than existing KBP systems.
%R 10.18653/v1/P17-2048
%U https://aclanthology.org/P17-2048
%U https://doi.org/10.18653/v1/P17-2048
%P 305-310
Markdown (Informal)
[Pocket Knowledge Base Population](https://aclanthology.org/P17-2048) (Wolfe et al., ACL 2017)
ACL
- Travis Wolfe, Mark Dredze, and Benjamin Van Durme. 2017. Pocket Knowledge Base Population. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 305–310, Vancouver, Canada. Association for Computational Linguistics.