@inproceedings{stanovsky-etal-2017-integrating,
title = "Integrating Deep Linguistic Features in Factuality Prediction over Unified Datasets",
author = "Stanovsky, Gabriel and
Eckle-Kohler, Judith and
Puzikov, Yevgeniy and
Dagan, Ido and
Gurevych, Iryna",
editor = "Barzilay, Regina and
Kan, Min-Yen",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P17-2056",
doi = "10.18653/v1/P17-2056",
pages = "352--357",
abstract = "Previous models for the assessment of commitment towards a predicate in a sentence (also known as factuality prediction) were trained and tested against a specific annotated dataset, subsequently limiting the generality of their results. In this work we propose an intuitive method for mapping three previously annotated corpora onto a single factuality scale, thereby enabling models to be tested across these corpora. In addition, we design a novel model for factuality prediction by first extending a previous rule-based factuality prediction system and applying it over an abstraction of dependency trees, and then using the output of this system in a supervised classifier. We show that this model outperforms previous methods on all three datasets. We make both the unified factuality corpus and our new model publicly available.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="stanovsky-etal-2017-integrating">
<titleInfo>
<title>Integrating Deep Linguistic Features in Factuality Prediction over Unified Datasets</title>
</titleInfo>
<name type="personal">
<namePart type="given">Gabriel</namePart>
<namePart type="family">Stanovsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Judith</namePart>
<namePart type="family">Eckle-Kohler</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yevgeniy</namePart>
<namePart type="family">Puzikov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ido</namePart>
<namePart type="family">Dagan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Regina</namePart>
<namePart type="family">Barzilay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Previous models for the assessment of commitment towards a predicate in a sentence (also known as factuality prediction) were trained and tested against a specific annotated dataset, subsequently limiting the generality of their results. In this work we propose an intuitive method for mapping three previously annotated corpora onto a single factuality scale, thereby enabling models to be tested across these corpora. In addition, we design a novel model for factuality prediction by first extending a previous rule-based factuality prediction system and applying it over an abstraction of dependency trees, and then using the output of this system in a supervised classifier. We show that this model outperforms previous methods on all three datasets. We make both the unified factuality corpus and our new model publicly available.</abstract>
<identifier type="citekey">stanovsky-etal-2017-integrating</identifier>
<identifier type="doi">10.18653/v1/P17-2056</identifier>
<location>
<url>https://aclanthology.org/P17-2056</url>
</location>
<part>
<date>2017-07</date>
<extent unit="page">
<start>352</start>
<end>357</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Integrating Deep Linguistic Features in Factuality Prediction over Unified Datasets
%A Stanovsky, Gabriel
%A Eckle-Kohler, Judith
%A Puzikov, Yevgeniy
%A Dagan, Ido
%A Gurevych, Iryna
%Y Barzilay, Regina
%Y Kan, Min-Yen
%S Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2017
%8 July
%I Association for Computational Linguistics
%C Vancouver, Canada
%F stanovsky-etal-2017-integrating
%X Previous models for the assessment of commitment towards a predicate in a sentence (also known as factuality prediction) were trained and tested against a specific annotated dataset, subsequently limiting the generality of their results. In this work we propose an intuitive method for mapping three previously annotated corpora onto a single factuality scale, thereby enabling models to be tested across these corpora. In addition, we design a novel model for factuality prediction by first extending a previous rule-based factuality prediction system and applying it over an abstraction of dependency trees, and then using the output of this system in a supervised classifier. We show that this model outperforms previous methods on all three datasets. We make both the unified factuality corpus and our new model publicly available.
%R 10.18653/v1/P17-2056
%U https://aclanthology.org/P17-2056
%U https://doi.org/10.18653/v1/P17-2056
%P 352-357
Markdown (Informal)
[Integrating Deep Linguistic Features in Factuality Prediction over Unified Datasets](https://aclanthology.org/P17-2056) (Stanovsky et al., ACL 2017)
ACL