@inproceedings{marie-fujita-2017-efficient,
title = "Efficient Extraction of Pseudo-Parallel Sentences from Raw Monolingual Data Using Word Embeddings",
author = "Marie, Benjamin and
Fujita, Atsushi",
editor = "Barzilay, Regina and
Kan, Min-Yen",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P17-2062",
doi = "10.18653/v1/P17-2062",
pages = "392--398",
abstract = "We propose a new method for extracting pseudo-parallel sentences from a pair of large monolingual corpora, without relying on any document-level information. Our method first exploits word embeddings in order to efficiently evaluate trillions of candidate sentence pairs and then a classifier to find the most reliable ones. We report significant improvements in domain adaptation for statistical machine translation when using a translation model trained on the sentence pairs extracted from in-domain monolingual corpora.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="marie-fujita-2017-efficient">
<titleInfo>
<title>Efficient Extraction of Pseudo-Parallel Sentences from Raw Monolingual Data Using Word Embeddings</title>
</titleInfo>
<name type="personal">
<namePart type="given">Benjamin</namePart>
<namePart type="family">Marie</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Atsushi</namePart>
<namePart type="family">Fujita</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Regina</namePart>
<namePart type="family">Barzilay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose a new method for extracting pseudo-parallel sentences from a pair of large monolingual corpora, without relying on any document-level information. Our method first exploits word embeddings in order to efficiently evaluate trillions of candidate sentence pairs and then a classifier to find the most reliable ones. We report significant improvements in domain adaptation for statistical machine translation when using a translation model trained on the sentence pairs extracted from in-domain monolingual corpora.</abstract>
<identifier type="citekey">marie-fujita-2017-efficient</identifier>
<identifier type="doi">10.18653/v1/P17-2062</identifier>
<location>
<url>https://aclanthology.org/P17-2062</url>
</location>
<part>
<date>2017-07</date>
<extent unit="page">
<start>392</start>
<end>398</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Efficient Extraction of Pseudo-Parallel Sentences from Raw Monolingual Data Using Word Embeddings
%A Marie, Benjamin
%A Fujita, Atsushi
%Y Barzilay, Regina
%Y Kan, Min-Yen
%S Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2017
%8 July
%I Association for Computational Linguistics
%C Vancouver, Canada
%F marie-fujita-2017-efficient
%X We propose a new method for extracting pseudo-parallel sentences from a pair of large monolingual corpora, without relying on any document-level information. Our method first exploits word embeddings in order to efficiently evaluate trillions of candidate sentence pairs and then a classifier to find the most reliable ones. We report significant improvements in domain adaptation for statistical machine translation when using a translation model trained on the sentence pairs extracted from in-domain monolingual corpora.
%R 10.18653/v1/P17-2062
%U https://aclanthology.org/P17-2062
%U https://doi.org/10.18653/v1/P17-2062
%P 392-398
Markdown (Informal)
[Efficient Extraction of Pseudo-Parallel Sentences from Raw Monolingual Data Using Word Embeddings](https://aclanthology.org/P17-2062) (Marie & Fujita, ACL 2017)
ACL