@inproceedings{elrazzaz-etal-2017-methodical,
title = "Methodical Evaluation of {A}rabic Word Embeddings",
author = "Elrazzaz, Mohammed and
Elbassuoni, Shady and
Shaban, Khaled and
Helwe, Chadi",
editor = "Barzilay, Regina and
Kan, Min-Yen",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P17-2072/",
doi = "10.18653/v1/P17-2072",
pages = "454--458",
abstract = "Many unsupervised learning techniques have been proposed to obtain meaningful representations of words from text. In this study, we evaluate these various techniques when used to generate Arabic word embeddings. We first build a benchmark for the Arabic language that can be utilized to perform intrinsic evaluation of different word embeddings. We then perform additional extrinsic evaluations of the embeddings based on two NLP tasks."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="elrazzaz-etal-2017-methodical">
<titleInfo>
<title>Methodical Evaluation of Arabic Word Embeddings</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mohammed</namePart>
<namePart type="family">Elrazzaz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shady</namePart>
<namePart type="family">Elbassuoni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khaled</namePart>
<namePart type="family">Shaban</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chadi</namePart>
<namePart type="family">Helwe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Regina</namePart>
<namePart type="family">Barzilay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Many unsupervised learning techniques have been proposed to obtain meaningful representations of words from text. In this study, we evaluate these various techniques when used to generate Arabic word embeddings. We first build a benchmark for the Arabic language that can be utilized to perform intrinsic evaluation of different word embeddings. We then perform additional extrinsic evaluations of the embeddings based on two NLP tasks.</abstract>
<identifier type="citekey">elrazzaz-etal-2017-methodical</identifier>
<identifier type="doi">10.18653/v1/P17-2072</identifier>
<location>
<url>https://aclanthology.org/P17-2072/</url>
</location>
<part>
<date>2017-07</date>
<extent unit="page">
<start>454</start>
<end>458</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Methodical Evaluation of Arabic Word Embeddings
%A Elrazzaz, Mohammed
%A Elbassuoni, Shady
%A Shaban, Khaled
%A Helwe, Chadi
%Y Barzilay, Regina
%Y Kan, Min-Yen
%S Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2017
%8 July
%I Association for Computational Linguistics
%C Vancouver, Canada
%F elrazzaz-etal-2017-methodical
%X Many unsupervised learning techniques have been proposed to obtain meaningful representations of words from text. In this study, we evaluate these various techniques when used to generate Arabic word embeddings. We first build a benchmark for the Arabic language that can be utilized to perform intrinsic evaluation of different word embeddings. We then perform additional extrinsic evaluations of the embeddings based on two NLP tasks.
%R 10.18653/v1/P17-2072
%U https://aclanthology.org/P17-2072/
%U https://doi.org/10.18653/v1/P17-2072
%P 454-458
Markdown (Informal)
[Methodical Evaluation of Arabic Word Embeddings](https://aclanthology.org/P17-2072/) (Elrazzaz et al., ACL 2017)
ACL
- Mohammed Elrazzaz, Shady Elbassuoni, Khaled Shaban, and Chadi Helwe. 2017. Methodical Evaluation of Arabic Word Embeddings. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 454–458, Vancouver, Canada. Association for Computational Linguistics.