@inproceedings{van-der-goot-van-noord-2017-parser,
title = "Parser Adaptation for Social Media by Integrating Normalization",
author = "van der Goot, Rob and
van Noord, Gertjan",
editor = "Barzilay, Regina and
Kan, Min-Yen",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P17-2078",
doi = "10.18653/v1/P17-2078",
pages = "491--497",
abstract = "This work explores different approaches of using normalization for parser adaptation. Traditionally, normalization is used as separate pre-processing step. We show that integrating the normalization model into the parsing algorithm is more beneficial. This way, multiple normalization candidates can be leveraged, which improves parsing performance on social media. We test this hypothesis by modifying the Berkeley parser; out-of-the-box it achieves an F1 score of 66.52. Our integrated approach reaches a significant improvement with an F1 score of 67.36, while using the best normalization sequence results in an F1 score of only 66.94.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="van-der-goot-van-noord-2017-parser">
<titleInfo>
<title>Parser Adaptation for Social Media by Integrating Normalization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Rob</namePart>
<namePart type="family">van der Goot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gertjan</namePart>
<namePart type="family">van Noord</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Regina</namePart>
<namePart type="family">Barzilay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This work explores different approaches of using normalization for parser adaptation. Traditionally, normalization is used as separate pre-processing step. We show that integrating the normalization model into the parsing algorithm is more beneficial. This way, multiple normalization candidates can be leveraged, which improves parsing performance on social media. We test this hypothesis by modifying the Berkeley parser; out-of-the-box it achieves an F1 score of 66.52. Our integrated approach reaches a significant improvement with an F1 score of 67.36, while using the best normalization sequence results in an F1 score of only 66.94.</abstract>
<identifier type="citekey">van-der-goot-van-noord-2017-parser</identifier>
<identifier type="doi">10.18653/v1/P17-2078</identifier>
<location>
<url>https://aclanthology.org/P17-2078</url>
</location>
<part>
<date>2017-07</date>
<extent unit="page">
<start>491</start>
<end>497</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Parser Adaptation for Social Media by Integrating Normalization
%A van der Goot, Rob
%A van Noord, Gertjan
%Y Barzilay, Regina
%Y Kan, Min-Yen
%S Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2017
%8 July
%I Association for Computational Linguistics
%C Vancouver, Canada
%F van-der-goot-van-noord-2017-parser
%X This work explores different approaches of using normalization for parser adaptation. Traditionally, normalization is used as separate pre-processing step. We show that integrating the normalization model into the parsing algorithm is more beneficial. This way, multiple normalization candidates can be leveraged, which improves parsing performance on social media. We test this hypothesis by modifying the Berkeley parser; out-of-the-box it achieves an F1 score of 66.52. Our integrated approach reaches a significant improvement with an F1 score of 67.36, while using the best normalization sequence results in an F1 score of only 66.94.
%R 10.18653/v1/P17-2078
%U https://aclanthology.org/P17-2078
%U https://doi.org/10.18653/v1/P17-2078
%P 491-497
Markdown (Informal)
[Parser Adaptation for Social Media by Integrating Normalization](https://aclanthology.org/P17-2078) (van der Goot & van Noord, ACL 2017)
ACL