@inproceedings{tran-etal-2017-generative,
title = "A Generative Attentional Neural Network Model for Dialogue Act Classification",
author = "Tran, Quan Hung and
Haffari, Gholamreza and
Zukerman, Ingrid",
editor = "Barzilay, Regina and
Kan, Min-Yen",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P17-2083/",
doi = "10.18653/v1/P17-2083",
pages = "524--529",
abstract = "We propose a novel generative neural network architecture for Dialogue Act classification. Building upon the Recurrent Neural Network framework, our model incorporates a novel attentional technique and a label to label connection for sequence learning, akin to Hidden Markov Models. The experiments show that both of these innovations lead our model to outperform strong baselines for dialogue act classification on MapTask and Switchboard corpora. We further empirically analyse the effectiveness of each of the new innovations."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tran-etal-2017-generative">
<titleInfo>
<title>A Generative Attentional Neural Network Model for Dialogue Act Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Quan</namePart>
<namePart type="given">Hung</namePart>
<namePart type="family">Tran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gholamreza</namePart>
<namePart type="family">Haffari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ingrid</namePart>
<namePart type="family">Zukerman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Regina</namePart>
<namePart type="family">Barzilay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose a novel generative neural network architecture for Dialogue Act classification. Building upon the Recurrent Neural Network framework, our model incorporates a novel attentional technique and a label to label connection for sequence learning, akin to Hidden Markov Models. The experiments show that both of these innovations lead our model to outperform strong baselines for dialogue act classification on MapTask and Switchboard corpora. We further empirically analyse the effectiveness of each of the new innovations.</abstract>
<identifier type="citekey">tran-etal-2017-generative</identifier>
<identifier type="doi">10.18653/v1/P17-2083</identifier>
<location>
<url>https://aclanthology.org/P17-2083/</url>
</location>
<part>
<date>2017-07</date>
<extent unit="page">
<start>524</start>
<end>529</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Generative Attentional Neural Network Model for Dialogue Act Classification
%A Tran, Quan Hung
%A Haffari, Gholamreza
%A Zukerman, Ingrid
%Y Barzilay, Regina
%Y Kan, Min-Yen
%S Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2017
%8 July
%I Association for Computational Linguistics
%C Vancouver, Canada
%F tran-etal-2017-generative
%X We propose a novel generative neural network architecture for Dialogue Act classification. Building upon the Recurrent Neural Network framework, our model incorporates a novel attentional technique and a label to label connection for sequence learning, akin to Hidden Markov Models. The experiments show that both of these innovations lead our model to outperform strong baselines for dialogue act classification on MapTask and Switchboard corpora. We further empirically analyse the effectiveness of each of the new innovations.
%R 10.18653/v1/P17-2083
%U https://aclanthology.org/P17-2083/
%U https://doi.org/10.18653/v1/P17-2083
%P 524-529
Markdown (Informal)
[A Generative Attentional Neural Network Model for Dialogue Act Classification](https://aclanthology.org/P17-2083/) (Tran et al., ACL 2017)
ACL