@inproceedings{teneva-cheng-2017-salience,
title = "Salience Rank: Efficient Keyphrase Extraction with Topic Modeling",
author = "Teneva, Nedelina and
Cheng, Weiwei",
editor = "Barzilay, Regina and
Kan, Min-Yen",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P17-2084/",
doi = "10.18653/v1/P17-2084",
pages = "530--535",
abstract = "Topical PageRank (TPR) uses latent topic distribution inferred by Latent Dirichlet Allocation (LDA) to perform ranking of noun phrases extracted from documents. The ranking procedure consists of running PageRank K times, where K is the number of topics used in the LDA model. In this paper, we propose a modification of TPR, called Salience Rank. Salience Rank only needs to run PageRank once and extracts comparable or better keyphrases on benchmark datasets. In addition to quality and efficiency benefit, our method has the flexibility to extract keyphrases with varying tradeoffs between topic specificity and corpus specificity."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="teneva-cheng-2017-salience">
<titleInfo>
<title>Salience Rank: Efficient Keyphrase Extraction with Topic Modeling</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nedelina</namePart>
<namePart type="family">Teneva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Weiwei</namePart>
<namePart type="family">Cheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Regina</namePart>
<namePart type="family">Barzilay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Topical PageRank (TPR) uses latent topic distribution inferred by Latent Dirichlet Allocation (LDA) to perform ranking of noun phrases extracted from documents. The ranking procedure consists of running PageRank K times, where K is the number of topics used in the LDA model. In this paper, we propose a modification of TPR, called Salience Rank. Salience Rank only needs to run PageRank once and extracts comparable or better keyphrases on benchmark datasets. In addition to quality and efficiency benefit, our method has the flexibility to extract keyphrases with varying tradeoffs between topic specificity and corpus specificity.</abstract>
<identifier type="citekey">teneva-cheng-2017-salience</identifier>
<identifier type="doi">10.18653/v1/P17-2084</identifier>
<location>
<url>https://aclanthology.org/P17-2084/</url>
</location>
<part>
<date>2017-07</date>
<extent unit="page">
<start>530</start>
<end>535</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Salience Rank: Efficient Keyphrase Extraction with Topic Modeling
%A Teneva, Nedelina
%A Cheng, Weiwei
%Y Barzilay, Regina
%Y Kan, Min-Yen
%S Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2017
%8 July
%I Association for Computational Linguistics
%C Vancouver, Canada
%F teneva-cheng-2017-salience
%X Topical PageRank (TPR) uses latent topic distribution inferred by Latent Dirichlet Allocation (LDA) to perform ranking of noun phrases extracted from documents. The ranking procedure consists of running PageRank K times, where K is the number of topics used in the LDA model. In this paper, we propose a modification of TPR, called Salience Rank. Salience Rank only needs to run PageRank once and extracts comparable or better keyphrases on benchmark datasets. In addition to quality and efficiency benefit, our method has the flexibility to extract keyphrases with varying tradeoffs between topic specificity and corpus specificity.
%R 10.18653/v1/P17-2084
%U https://aclanthology.org/P17-2084/
%U https://doi.org/10.18653/v1/P17-2084
%P 530-535
Markdown (Informal)
[Salience Rank: Efficient Keyphrase Extraction with Topic Modeling](https://aclanthology.org/P17-2084/) (Teneva & Cheng, ACL 2017)
ACL