@inproceedings{chen-etal-2017-improving,
title = "Improving Native Language Identification by Using Spelling Errors",
author = "Chen, Lingzhen and
Strapparava, Carlo and
Nastase, Vivi",
editor = "Barzilay, Regina and
Kan, Min-Yen",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P17-2086/",
doi = "10.18653/v1/P17-2086",
pages = "542--546",
abstract = "In this paper, we explore spelling errors as a source of information for detecting the native language of a writer, a previously under-explored area. We note that character n-grams from misspelled words are very indicative of the native language of the author. In combination with other lexical features, spelling error features lead to 1.2{\%} improvement in accuracy on classifying texts in the TOEFL11 corpus by the author`s native language, compared to systems participating in the NLI shared task."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chen-etal-2017-improving">
<titleInfo>
<title>Improving Native Language Identification by Using Spelling Errors</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lingzhen</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carlo</namePart>
<namePart type="family">Strapparava</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivi</namePart>
<namePart type="family">Nastase</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Regina</namePart>
<namePart type="family">Barzilay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we explore spelling errors as a source of information for detecting the native language of a writer, a previously under-explored area. We note that character n-grams from misspelled words are very indicative of the native language of the author. In combination with other lexical features, spelling error features lead to 1.2% improvement in accuracy on classifying texts in the TOEFL11 corpus by the author‘s native language, compared to systems participating in the NLI shared task.</abstract>
<identifier type="citekey">chen-etal-2017-improving</identifier>
<identifier type="doi">10.18653/v1/P17-2086</identifier>
<location>
<url>https://aclanthology.org/P17-2086/</url>
</location>
<part>
<date>2017-07</date>
<extent unit="page">
<start>542</start>
<end>546</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Improving Native Language Identification by Using Spelling Errors
%A Chen, Lingzhen
%A Strapparava, Carlo
%A Nastase, Vivi
%Y Barzilay, Regina
%Y Kan, Min-Yen
%S Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2017
%8 July
%I Association for Computational Linguistics
%C Vancouver, Canada
%F chen-etal-2017-improving
%X In this paper, we explore spelling errors as a source of information for detecting the native language of a writer, a previously under-explored area. We note that character n-grams from misspelled words are very indicative of the native language of the author. In combination with other lexical features, spelling error features lead to 1.2% improvement in accuracy on classifying texts in the TOEFL11 corpus by the author‘s native language, compared to systems participating in the NLI shared task.
%R 10.18653/v1/P17-2086
%U https://aclanthology.org/P17-2086/
%U https://doi.org/10.18653/v1/P17-2086
%P 542-546
Markdown (Informal)
[Improving Native Language Identification by Using Spelling Errors](https://aclanthology.org/P17-2086/) (Chen et al., ACL 2017)
ACL