@inproceedings{hayashi-shimbo-2017-equivalence,
title = "On the Equivalence of Holographic and Complex Embeddings for Link Prediction",
author = "Hayashi, Katsuhiko and
Shimbo, Masashi",
editor = "Barzilay, Regina and
Kan, Min-Yen",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P17-2088/",
doi = "10.18653/v1/P17-2088",
pages = "554--559",
abstract = "We show the equivalence of two state-of-the-art models for link prediction/knowledge graph completion: Nickel et al`s holographic embeddings and Trouillon et al.`s complex embeddings. We first consider a spectral version of the holographic embeddings, exploiting the frequency domain in the Fourier transform for efficient computation. The analysis of the resulting model reveals that it can be viewed as an instance of the complex embeddings with a certain constraint imposed on the initial vectors upon training. Conversely, any set of complex embeddings can be converted to a set of equivalent holographic embeddings."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hayashi-shimbo-2017-equivalence">
<titleInfo>
<title>On the Equivalence of Holographic and Complex Embeddings for Link Prediction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Katsuhiko</namePart>
<namePart type="family">Hayashi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Masashi</namePart>
<namePart type="family">Shimbo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Regina</namePart>
<namePart type="family">Barzilay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We show the equivalence of two state-of-the-art models for link prediction/knowledge graph completion: Nickel et al‘s holographic embeddings and Trouillon et al.‘s complex embeddings. We first consider a spectral version of the holographic embeddings, exploiting the frequency domain in the Fourier transform for efficient computation. The analysis of the resulting model reveals that it can be viewed as an instance of the complex embeddings with a certain constraint imposed on the initial vectors upon training. Conversely, any set of complex embeddings can be converted to a set of equivalent holographic embeddings.</abstract>
<identifier type="citekey">hayashi-shimbo-2017-equivalence</identifier>
<identifier type="doi">10.18653/v1/P17-2088</identifier>
<location>
<url>https://aclanthology.org/P17-2088/</url>
</location>
<part>
<date>2017-07</date>
<extent unit="page">
<start>554</start>
<end>559</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T On the Equivalence of Holographic and Complex Embeddings for Link Prediction
%A Hayashi, Katsuhiko
%A Shimbo, Masashi
%Y Barzilay, Regina
%Y Kan, Min-Yen
%S Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2017
%8 July
%I Association for Computational Linguistics
%C Vancouver, Canada
%F hayashi-shimbo-2017-equivalence
%X We show the equivalence of two state-of-the-art models for link prediction/knowledge graph completion: Nickel et al‘s holographic embeddings and Trouillon et al.‘s complex embeddings. We first consider a spectral version of the holographic embeddings, exploiting the frequency domain in the Fourier transform for efficient computation. The analysis of the resulting model reveals that it can be viewed as an instance of the complex embeddings with a certain constraint imposed on the initial vectors upon training. Conversely, any set of complex embeddings can be converted to a set of equivalent holographic embeddings.
%R 10.18653/v1/P17-2088
%U https://aclanthology.org/P17-2088/
%U https://doi.org/10.18653/v1/P17-2088
%P 554-559
Markdown (Informal)
[On the Equivalence of Holographic and Complex Embeddings for Link Prediction](https://aclanthology.org/P17-2088/) (Hayashi & Shimbo, ACL 2017)
ACL