@inproceedings{sajjad-etal-2017-challenging,
    title = "Challenging Language-Dependent Segmentation for {A}rabic: An Application to Machine Translation and Part-of-Speech Tagging",
    author = "Sajjad, Hassan  and
      Dalvi, Fahim  and
      Durrani, Nadir  and
      Abdelali, Ahmed  and
      Belinkov, Yonatan  and
      Vogel, Stephan",
    editor = "Barzilay, Regina  and
      Kan, Min-Yen",
    booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
    month = jul,
    year = "2017",
    address = "Vancouver, Canada",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/P17-2095/",
    doi = "10.18653/v1/P17-2095",
    pages = "601--607",
    abstract = "Word segmentation plays a pivotal role in improving any Arabic NLP application. Therefore, a lot of research has been spent in improving its accuracy. Off-the-shelf tools, however, are: i) complicated to use and ii) domain/dialect dependent. We explore three language-independent alternatives to morphological segmentation using: i) data-driven sub-word units, ii) characters as a unit of learning, and iii) word embeddings learned using a character CNN (Convolution Neural Network). On the tasks of Machine Translation and POS tagging, we found these methods to achieve close to, and occasionally surpass state-of-the-art performance. In our analysis, we show that a neural machine translation system is sensitive to the ratio of source and target tokens, and a ratio close to 1 or greater, gives optimal performance."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sajjad-etal-2017-challenging">
    <titleInfo>
        <title>Challenging Language-Dependent Segmentation for Arabic: An Application to Machine Translation and Part-of-Speech Tagging</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Hassan</namePart>
        <namePart type="family">Sajjad</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Fahim</namePart>
        <namePart type="family">Dalvi</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Nadir</namePart>
        <namePart type="family">Durrani</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Ahmed</namePart>
        <namePart type="family">Abdelali</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Yonatan</namePart>
        <namePart type="family">Belinkov</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Stephan</namePart>
        <namePart type="family">Vogel</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2017-07</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Regina</namePart>
            <namePart type="family">Barzilay</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Min-Yen</namePart>
            <namePart type="family">Kan</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Vancouver, Canada</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>Word segmentation plays a pivotal role in improving any Arabic NLP application. Therefore, a lot of research has been spent in improving its accuracy. Off-the-shelf tools, however, are: i) complicated to use and ii) domain/dialect dependent. We explore three language-independent alternatives to morphological segmentation using: i) data-driven sub-word units, ii) characters as a unit of learning, and iii) word embeddings learned using a character CNN (Convolution Neural Network). On the tasks of Machine Translation and POS tagging, we found these methods to achieve close to, and occasionally surpass state-of-the-art performance. In our analysis, we show that a neural machine translation system is sensitive to the ratio of source and target tokens, and a ratio close to 1 or greater, gives optimal performance.</abstract>
    <identifier type="citekey">sajjad-etal-2017-challenging</identifier>
    <identifier type="doi">10.18653/v1/P17-2095</identifier>
    <location>
        <url>https://aclanthology.org/P17-2095/</url>
    </location>
    <part>
        <date>2017-07</date>
        <extent unit="page">
            <start>601</start>
            <end>607</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Challenging Language-Dependent Segmentation for Arabic: An Application to Machine Translation and Part-of-Speech Tagging
%A Sajjad, Hassan
%A Dalvi, Fahim
%A Durrani, Nadir
%A Abdelali, Ahmed
%A Belinkov, Yonatan
%A Vogel, Stephan
%Y Barzilay, Regina
%Y Kan, Min-Yen
%S Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2017
%8 July
%I Association for Computational Linguistics
%C Vancouver, Canada
%F sajjad-etal-2017-challenging
%X Word segmentation plays a pivotal role in improving any Arabic NLP application. Therefore, a lot of research has been spent in improving its accuracy. Off-the-shelf tools, however, are: i) complicated to use and ii) domain/dialect dependent. We explore three language-independent alternatives to morphological segmentation using: i) data-driven sub-word units, ii) characters as a unit of learning, and iii) word embeddings learned using a character CNN (Convolution Neural Network). On the tasks of Machine Translation and POS tagging, we found these methods to achieve close to, and occasionally surpass state-of-the-art performance. In our analysis, we show that a neural machine translation system is sensitive to the ratio of source and target tokens, and a ratio close to 1 or greater, gives optimal performance.
%R 10.18653/v1/P17-2095
%U https://aclanthology.org/P17-2095/
%U https://doi.org/10.18653/v1/P17-2095
%P 601-607
Markdown (Informal)
[Challenging Language-Dependent Segmentation for Arabic: An Application to Machine Translation and Part-of-Speech Tagging](https://aclanthology.org/P17-2095/) (Sajjad et al., ACL 2017)
ACL