@inproceedings{sajjad-etal-2017-challenging,
title = "Challenging Language-Dependent Segmentation for {A}rabic: An Application to Machine Translation and Part-of-Speech Tagging",
author = "Sajjad, Hassan and
Dalvi, Fahim and
Durrani, Nadir and
Abdelali, Ahmed and
Belinkov, Yonatan and
Vogel, Stephan",
editor = "Barzilay, Regina and
Kan, Min-Yen",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P17-2095/",
doi = "10.18653/v1/P17-2095",
pages = "601--607",
abstract = "Word segmentation plays a pivotal role in improving any Arabic NLP application. Therefore, a lot of research has been spent in improving its accuracy. Off-the-shelf tools, however, are: i) complicated to use and ii) domain/dialect dependent. We explore three language-independent alternatives to morphological segmentation using: i) data-driven sub-word units, ii) characters as a unit of learning, and iii) word embeddings learned using a character CNN (Convolution Neural Network). On the tasks of Machine Translation and POS tagging, we found these methods to achieve close to, and occasionally surpass state-of-the-art performance. In our analysis, we show that a neural machine translation system is sensitive to the ratio of source and target tokens, and a ratio close to 1 or greater, gives optimal performance."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sajjad-etal-2017-challenging">
<titleInfo>
<title>Challenging Language-Dependent Segmentation for Arabic: An Application to Machine Translation and Part-of-Speech Tagging</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hassan</namePart>
<namePart type="family">Sajjad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fahim</namePart>
<namePart type="family">Dalvi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nadir</namePart>
<namePart type="family">Durrani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ahmed</namePart>
<namePart type="family">Abdelali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yonatan</namePart>
<namePart type="family">Belinkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stephan</namePart>
<namePart type="family">Vogel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Regina</namePart>
<namePart type="family">Barzilay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Word segmentation plays a pivotal role in improving any Arabic NLP application. Therefore, a lot of research has been spent in improving its accuracy. Off-the-shelf tools, however, are: i) complicated to use and ii) domain/dialect dependent. We explore three language-independent alternatives to morphological segmentation using: i) data-driven sub-word units, ii) characters as a unit of learning, and iii) word embeddings learned using a character CNN (Convolution Neural Network). On the tasks of Machine Translation and POS tagging, we found these methods to achieve close to, and occasionally surpass state-of-the-art performance. In our analysis, we show that a neural machine translation system is sensitive to the ratio of source and target tokens, and a ratio close to 1 or greater, gives optimal performance.</abstract>
<identifier type="citekey">sajjad-etal-2017-challenging</identifier>
<identifier type="doi">10.18653/v1/P17-2095</identifier>
<location>
<url>https://aclanthology.org/P17-2095/</url>
</location>
<part>
<date>2017-07</date>
<extent unit="page">
<start>601</start>
<end>607</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Challenging Language-Dependent Segmentation for Arabic: An Application to Machine Translation and Part-of-Speech Tagging
%A Sajjad, Hassan
%A Dalvi, Fahim
%A Durrani, Nadir
%A Abdelali, Ahmed
%A Belinkov, Yonatan
%A Vogel, Stephan
%Y Barzilay, Regina
%Y Kan, Min-Yen
%S Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2017
%8 July
%I Association for Computational Linguistics
%C Vancouver, Canada
%F sajjad-etal-2017-challenging
%X Word segmentation plays a pivotal role in improving any Arabic NLP application. Therefore, a lot of research has been spent in improving its accuracy. Off-the-shelf tools, however, are: i) complicated to use and ii) domain/dialect dependent. We explore three language-independent alternatives to morphological segmentation using: i) data-driven sub-word units, ii) characters as a unit of learning, and iii) word embeddings learned using a character CNN (Convolution Neural Network). On the tasks of Machine Translation and POS tagging, we found these methods to achieve close to, and occasionally surpass state-of-the-art performance. In our analysis, we show that a neural machine translation system is sensitive to the ratio of source and target tokens, and a ratio close to 1 or greater, gives optimal performance.
%R 10.18653/v1/P17-2095
%U https://aclanthology.org/P17-2095/
%U https://doi.org/10.18653/v1/P17-2095
%P 601-607
Markdown (Informal)
[Challenging Language-Dependent Segmentation for Arabic: An Application to Machine Translation and Part-of-Speech Tagging](https://aclanthology.org/P17-2095/) (Sajjad et al., ACL 2017)
ACL