@inproceedings{toleu-etal-2017-character,
title = "Character-Aware Neural Morphological Disambiguation",
author = "Toleu, Alymzhan and
Tolegen, Gulmira and
Makazhanov, Aibek",
editor = "Barzilay, Regina and
Kan, Min-Yen",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P17-2105",
doi = "10.18653/v1/P17-2105",
pages = "666--671",
abstract = "We develop a language-independent, deep learning-based approach to the task of morphological disambiguation. Guided by the intuition that the correct analysis should be {``}most similar{''} to the context, we propose dense representations for morphological analyses and surface context and a simple yet effective way of combining the two to perform disambiguation. Our approach improves on the language-dependent state of the art for two agglutinative languages (Turkish and Kazakh) and can be potentially applied to other morphologically complex languages.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="toleu-etal-2017-character">
<titleInfo>
<title>Character-Aware Neural Morphological Disambiguation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alymzhan</namePart>
<namePart type="family">Toleu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gulmira</namePart>
<namePart type="family">Tolegen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aibek</namePart>
<namePart type="family">Makazhanov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Regina</namePart>
<namePart type="family">Barzilay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We develop a language-independent, deep learning-based approach to the task of morphological disambiguation. Guided by the intuition that the correct analysis should be “most similar” to the context, we propose dense representations for morphological analyses and surface context and a simple yet effective way of combining the two to perform disambiguation. Our approach improves on the language-dependent state of the art for two agglutinative languages (Turkish and Kazakh) and can be potentially applied to other morphologically complex languages.</abstract>
<identifier type="citekey">toleu-etal-2017-character</identifier>
<identifier type="doi">10.18653/v1/P17-2105</identifier>
<location>
<url>https://aclanthology.org/P17-2105</url>
</location>
<part>
<date>2017-07</date>
<extent unit="page">
<start>666</start>
<end>671</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Character-Aware Neural Morphological Disambiguation
%A Toleu, Alymzhan
%A Tolegen, Gulmira
%A Makazhanov, Aibek
%Y Barzilay, Regina
%Y Kan, Min-Yen
%S Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2017
%8 July
%I Association for Computational Linguistics
%C Vancouver, Canada
%F toleu-etal-2017-character
%X We develop a language-independent, deep learning-based approach to the task of morphological disambiguation. Guided by the intuition that the correct analysis should be “most similar” to the context, we propose dense representations for morphological analyses and surface context and a simple yet effective way of combining the two to perform disambiguation. Our approach improves on the language-dependent state of the art for two agglutinative languages (Turkish and Kazakh) and can be potentially applied to other morphologically complex languages.
%R 10.18653/v1/P17-2105
%U https://aclanthology.org/P17-2105
%U https://doi.org/10.18653/v1/P17-2105
%P 666-671
Markdown (Informal)
[Character-Aware Neural Morphological Disambiguation](https://aclanthology.org/P17-2105) (Toleu et al., ACL 2017)
ACL
- Alymzhan Toleu, Gulmira Tolegen, and Aibek Makazhanov. 2017. Character-Aware Neural Morphological Disambiguation. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 666–671, Vancouver, Canada. Association for Computational Linguistics.