@inproceedings{liu-etal-2018-discourse,
title = "Discourse Representation Structure Parsing",
author = "Liu, Jiangming and
Cohen, Shay B. and
Lapata, Mirella",
editor = "Gurevych, Iryna and
Miyao, Yusuke",
booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P18-1040",
doi = "10.18653/v1/P18-1040",
pages = "429--439",
abstract = "We introduce an open-domain neural semantic parser which generates formal meaning representations in the style of Discourse Representation Theory (DRT; Kamp and Reyle 1993). We propose a method which transforms Discourse Representation Structures (DRSs) to trees and develop a structure-aware model which decomposes the decoding process into three stages: basic DRS structure prediction, condition prediction (i.e., predicates and relations), and referent prediction (i.e., variables). Experimental results on the Groningen Meaning Bank (GMB) show that our model outperforms competitive baselines by a wide margin.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liu-etal-2018-discourse">
<titleInfo>
<title>Discourse Representation Structure Parsing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jiangming</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shay</namePart>
<namePart type="given">B</namePart>
<namePart type="family">Cohen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mirella</namePart>
<namePart type="family">Lapata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yusuke</namePart>
<namePart type="family">Miyao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We introduce an open-domain neural semantic parser which generates formal meaning representations in the style of Discourse Representation Theory (DRT; Kamp and Reyle 1993). We propose a method which transforms Discourse Representation Structures (DRSs) to trees and develop a structure-aware model which decomposes the decoding process into three stages: basic DRS structure prediction, condition prediction (i.e., predicates and relations), and referent prediction (i.e., variables). Experimental results on the Groningen Meaning Bank (GMB) show that our model outperforms competitive baselines by a wide margin.</abstract>
<identifier type="citekey">liu-etal-2018-discourse</identifier>
<identifier type="doi">10.18653/v1/P18-1040</identifier>
<location>
<url>https://aclanthology.org/P18-1040</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>429</start>
<end>439</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Discourse Representation Structure Parsing
%A Liu, Jiangming
%A Cohen, Shay B.
%A Lapata, Mirella
%Y Gurevych, Iryna
%Y Miyao, Yusuke
%S Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F liu-etal-2018-discourse
%X We introduce an open-domain neural semantic parser which generates formal meaning representations in the style of Discourse Representation Theory (DRT; Kamp and Reyle 1993). We propose a method which transforms Discourse Representation Structures (DRSs) to trees and develop a structure-aware model which decomposes the decoding process into three stages: basic DRS structure prediction, condition prediction (i.e., predicates and relations), and referent prediction (i.e., variables). Experimental results on the Groningen Meaning Bank (GMB) show that our model outperforms competitive baselines by a wide margin.
%R 10.18653/v1/P18-1040
%U https://aclanthology.org/P18-1040
%U https://doi.org/10.18653/v1/P18-1040
%P 429-439
Markdown (Informal)
[Discourse Representation Structure Parsing](https://aclanthology.org/P18-1040) (Liu et al., ACL 2018)
ACL
- Jiangming Liu, Shay B. Cohen, and Mirella Lapata. 2018. Discourse Representation Structure Parsing. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 429–439, Melbourne, Australia. Association for Computational Linguistics.