@inproceedings{vanni-etal-2018-textual,
title = "Textual Deconvolution Saliency ({TDS}) : a deep tool box for linguistic analysis",
author = "Vanni, Laurent and
Ducoffe, Melanie and
Aguilar, Carlos and
Precioso, Frederic and
Mayaffre, Damon",
editor = "Gurevych, Iryna and
Miyao, Yusuke",
booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P18-1051/",
doi = "10.18653/v1/P18-1051",
pages = "548--557",
abstract = "In this paper, we propose a new strategy, called Text Deconvolution Saliency (TDS), to visualize linguistic information detected by a CNN for text classification. We extend Deconvolution Networks to text in order to present a new perspective on text analysis to the linguistic community. We empirically demonstrated the efficiency of our Text Deconvolution Saliency on corpora from three different languages: English, French, and Latin. For every tested dataset, our Text Deconvolution Saliency automatically encodes complex linguistic patterns based on co-occurrences and possibly on grammatical and syntax analysis."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="vanni-etal-2018-textual">
<titleInfo>
<title>Textual Deconvolution Saliency (TDS) : a deep tool box for linguistic analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Laurent</namePart>
<namePart type="family">Vanni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Melanie</namePart>
<namePart type="family">Ducoffe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carlos</namePart>
<namePart type="family">Aguilar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frederic</namePart>
<namePart type="family">Precioso</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Damon</namePart>
<namePart type="family">Mayaffre</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yusuke</namePart>
<namePart type="family">Miyao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we propose a new strategy, called Text Deconvolution Saliency (TDS), to visualize linguistic information detected by a CNN for text classification. We extend Deconvolution Networks to text in order to present a new perspective on text analysis to the linguistic community. We empirically demonstrated the efficiency of our Text Deconvolution Saliency on corpora from three different languages: English, French, and Latin. For every tested dataset, our Text Deconvolution Saliency automatically encodes complex linguistic patterns based on co-occurrences and possibly on grammatical and syntax analysis.</abstract>
<identifier type="citekey">vanni-etal-2018-textual</identifier>
<identifier type="doi">10.18653/v1/P18-1051</identifier>
<location>
<url>https://aclanthology.org/P18-1051/</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>548</start>
<end>557</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Textual Deconvolution Saliency (TDS) : a deep tool box for linguistic analysis
%A Vanni, Laurent
%A Ducoffe, Melanie
%A Aguilar, Carlos
%A Precioso, Frederic
%A Mayaffre, Damon
%Y Gurevych, Iryna
%Y Miyao, Yusuke
%S Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F vanni-etal-2018-textual
%X In this paper, we propose a new strategy, called Text Deconvolution Saliency (TDS), to visualize linguistic information detected by a CNN for text classification. We extend Deconvolution Networks to text in order to present a new perspective on text analysis to the linguistic community. We empirically demonstrated the efficiency of our Text Deconvolution Saliency on corpora from three different languages: English, French, and Latin. For every tested dataset, our Text Deconvolution Saliency automatically encodes complex linguistic patterns based on co-occurrences and possibly on grammatical and syntax analysis.
%R 10.18653/v1/P18-1051
%U https://aclanthology.org/P18-1051/
%U https://doi.org/10.18653/v1/P18-1051
%P 548-557
Markdown (Informal)
[Textual Deconvolution Saliency (TDS) : a deep tool box for linguistic analysis](https://aclanthology.org/P18-1051/) (Vanni et al., ACL 2018)
ACL