@inproceedings{shibata-kurohashi-2018-entity,
title = "Entity-Centric Joint Modeling of {J}apanese Coreference Resolution and Predicate Argument Structure Analysis",
author = "Shibata, Tomohide and
Kurohashi, Sadao",
editor = "Gurevych, Iryna and
Miyao, Yusuke",
booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P18-1054/",
doi = "10.18653/v1/P18-1054",
pages = "579--589",
abstract = "Predicate argument structure analysis is a task of identifying structured events. To improve this field, we need to identify a salient entity, which cannot be identified without performing coreference resolution and predicate argument structure analysis simultaneously. This paper presents an entity-centric joint model for Japanese coreference resolution and predicate argument structure analysis. Each entity is assigned an embedding, and when the result of both analyses refers to an entity, the entity embedding is updated. The analyses take the entity embedding into consideration to access the global information of entities. Our experimental results demonstrate the proposed method can improve the performance of the inter-sentential zero anaphora resolution drastically, which is a notoriously difficult task in predicate argument structure analysis."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="shibata-kurohashi-2018-entity">
<titleInfo>
<title>Entity-Centric Joint Modeling of Japanese Coreference Resolution and Predicate Argument Structure Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tomohide</namePart>
<namePart type="family">Shibata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sadao</namePart>
<namePart type="family">Kurohashi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yusuke</namePart>
<namePart type="family">Miyao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Predicate argument structure analysis is a task of identifying structured events. To improve this field, we need to identify a salient entity, which cannot be identified without performing coreference resolution and predicate argument structure analysis simultaneously. This paper presents an entity-centric joint model for Japanese coreference resolution and predicate argument structure analysis. Each entity is assigned an embedding, and when the result of both analyses refers to an entity, the entity embedding is updated. The analyses take the entity embedding into consideration to access the global information of entities. Our experimental results demonstrate the proposed method can improve the performance of the inter-sentential zero anaphora resolution drastically, which is a notoriously difficult task in predicate argument structure analysis.</abstract>
<identifier type="citekey">shibata-kurohashi-2018-entity</identifier>
<identifier type="doi">10.18653/v1/P18-1054</identifier>
<location>
<url>https://aclanthology.org/P18-1054/</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>579</start>
<end>589</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Entity-Centric Joint Modeling of Japanese Coreference Resolution and Predicate Argument Structure Analysis
%A Shibata, Tomohide
%A Kurohashi, Sadao
%Y Gurevych, Iryna
%Y Miyao, Yusuke
%S Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F shibata-kurohashi-2018-entity
%X Predicate argument structure analysis is a task of identifying structured events. To improve this field, we need to identify a salient entity, which cannot be identified without performing coreference resolution and predicate argument structure analysis simultaneously. This paper presents an entity-centric joint model for Japanese coreference resolution and predicate argument structure analysis. Each entity is assigned an embedding, and when the result of both analyses refers to an entity, the entity embedding is updated. The analyses take the entity embedding into consideration to access the global information of entities. Our experimental results demonstrate the proposed method can improve the performance of the inter-sentential zero anaphora resolution drastically, which is a notoriously difficult task in predicate argument structure analysis.
%R 10.18653/v1/P18-1054
%U https://aclanthology.org/P18-1054/
%U https://doi.org/10.18653/v1/P18-1054
%P 579-589
Markdown (Informal)
[Entity-Centric Joint Modeling of Japanese Coreference Resolution and Predicate Argument Structure Analysis](https://aclanthology.org/P18-1054/) (Shibata & Kurohashi, ACL 2018)
ACL