@inproceedings{shen-etal-2018-straight,
title = "Straight to the Tree: Constituency Parsing with Neural Syntactic Distance",
author = "Shen, Yikang and
Lin, Zhouhan and
Jacob, Athul Paul and
Sordoni, Alessandro and
Courville, Aaron and
Bengio, Yoshua",
editor = "Gurevych, Iryna and
Miyao, Yusuke",
booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P18-1108",
doi = "10.18653/v1/P18-1108",
pages = "1171--1180",
abstract = "In this work, we propose a novel constituency parsing scheme. The model first predicts a real-valued scalar, named syntactic distance, for each split position in the sentence. The topology of grammar tree is then determined by the values of syntactic distances. Compared to traditional shift-reduce parsing schemes, our approach is free from the potentially disastrous compounding error. It is also easier to parallelize and much faster. Our model achieves the state-of-the-art single model F1 score of 92.1 on PTB and 86.4 on CTB dataset, which surpasses the previous single model results by a large margin.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="shen-etal-2018-straight">
<titleInfo>
<title>Straight to the Tree: Constituency Parsing with Neural Syntactic Distance</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yikang</namePart>
<namePart type="family">Shen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhouhan</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Athul</namePart>
<namePart type="given">Paul</namePart>
<namePart type="family">Jacob</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Sordoni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aaron</namePart>
<namePart type="family">Courville</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yoshua</namePart>
<namePart type="family">Bengio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yusuke</namePart>
<namePart type="family">Miyao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this work, we propose a novel constituency parsing scheme. The model first predicts a real-valued scalar, named syntactic distance, for each split position in the sentence. The topology of grammar tree is then determined by the values of syntactic distances. Compared to traditional shift-reduce parsing schemes, our approach is free from the potentially disastrous compounding error. It is also easier to parallelize and much faster. Our model achieves the state-of-the-art single model F1 score of 92.1 on PTB and 86.4 on CTB dataset, which surpasses the previous single model results by a large margin.</abstract>
<identifier type="citekey">shen-etal-2018-straight</identifier>
<identifier type="doi">10.18653/v1/P18-1108</identifier>
<location>
<url>https://aclanthology.org/P18-1108</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>1171</start>
<end>1180</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Straight to the Tree: Constituency Parsing with Neural Syntactic Distance
%A Shen, Yikang
%A Lin, Zhouhan
%A Jacob, Athul Paul
%A Sordoni, Alessandro
%A Courville, Aaron
%A Bengio, Yoshua
%Y Gurevych, Iryna
%Y Miyao, Yusuke
%S Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F shen-etal-2018-straight
%X In this work, we propose a novel constituency parsing scheme. The model first predicts a real-valued scalar, named syntactic distance, for each split position in the sentence. The topology of grammar tree is then determined by the values of syntactic distances. Compared to traditional shift-reduce parsing schemes, our approach is free from the potentially disastrous compounding error. It is also easier to parallelize and much faster. Our model achieves the state-of-the-art single model F1 score of 92.1 on PTB and 86.4 on CTB dataset, which surpasses the previous single model results by a large margin.
%R 10.18653/v1/P18-1108
%U https://aclanthology.org/P18-1108
%U https://doi.org/10.18653/v1/P18-1108
%P 1171-1180
Markdown (Informal)
[Straight to the Tree: Constituency Parsing with Neural Syntactic Distance](https://aclanthology.org/P18-1108) (Shen et al., ACL 2018)
ACL
- Yikang Shen, Zhouhan Lin, Athul Paul Jacob, Alessandro Sordoni, Aaron Courville, and Yoshua Bengio. 2018. Straight to the Tree: Constituency Parsing with Neural Syntactic Distance. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1171–1180, Melbourne, Australia. Association for Computational Linguistics.