@inproceedings{joshi-etal-2018-extending,
title = "Extending a Parser to Distant Domains Using a Few Dozen Partially Annotated Examples",
author = "Joshi, Vidur and
Peters, Matthew and
Hopkins, Mark",
editor = "Gurevych, Iryna and
Miyao, Yusuke",
booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P18-1110/",
doi = "10.18653/v1/P18-1110",
pages = "1190--1199",
abstract = "We revisit domain adaptation for parsers in the neural era. First we show that recent advances in word representations greatly diminish the need for domain adaptation when the target domain is syntactically similar to the source domain. As evidence, we train a parser on the Wall Street Journal alone that achieves over 90{\%} F1 on the Brown corpus. For more syntactically distant domains, we provide a simple way to adapt a parser using only dozens of partial annotations. For instance, we increase the percentage of error-free geometry-domain parses in a held-out set from 45{\%} to 73{\%} using approximately five dozen training examples. In the process, we demonstrate a new state-of-the-art single model result on the Wall Street Journal test set of 94.3{\%}. This is an absolute increase of 1.7{\%} over the previous state-of-the-art of 92.6{\%}."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="joshi-etal-2018-extending">
<titleInfo>
<title>Extending a Parser to Distant Domains Using a Few Dozen Partially Annotated Examples</title>
</titleInfo>
<name type="personal">
<namePart type="given">Vidur</namePart>
<namePart type="family">Joshi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthew</namePart>
<namePart type="family">Peters</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mark</namePart>
<namePart type="family">Hopkins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yusuke</namePart>
<namePart type="family">Miyao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We revisit domain adaptation for parsers in the neural era. First we show that recent advances in word representations greatly diminish the need for domain adaptation when the target domain is syntactically similar to the source domain. As evidence, we train a parser on the Wall Street Journal alone that achieves over 90% F1 on the Brown corpus. For more syntactically distant domains, we provide a simple way to adapt a parser using only dozens of partial annotations. For instance, we increase the percentage of error-free geometry-domain parses in a held-out set from 45% to 73% using approximately five dozen training examples. In the process, we demonstrate a new state-of-the-art single model result on the Wall Street Journal test set of 94.3%. This is an absolute increase of 1.7% over the previous state-of-the-art of 92.6%.</abstract>
<identifier type="citekey">joshi-etal-2018-extending</identifier>
<identifier type="doi">10.18653/v1/P18-1110</identifier>
<location>
<url>https://aclanthology.org/P18-1110/</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>1190</start>
<end>1199</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Extending a Parser to Distant Domains Using a Few Dozen Partially Annotated Examples
%A Joshi, Vidur
%A Peters, Matthew
%A Hopkins, Mark
%Y Gurevych, Iryna
%Y Miyao, Yusuke
%S Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F joshi-etal-2018-extending
%X We revisit domain adaptation for parsers in the neural era. First we show that recent advances in word representations greatly diminish the need for domain adaptation when the target domain is syntactically similar to the source domain. As evidence, we train a parser on the Wall Street Journal alone that achieves over 90% F1 on the Brown corpus. For more syntactically distant domains, we provide a simple way to adapt a parser using only dozens of partial annotations. For instance, we increase the percentage of error-free geometry-domain parses in a held-out set from 45% to 73% using approximately five dozen training examples. In the process, we demonstrate a new state-of-the-art single model result on the Wall Street Journal test set of 94.3%. This is an absolute increase of 1.7% over the previous state-of-the-art of 92.6%.
%R 10.18653/v1/P18-1110
%U https://aclanthology.org/P18-1110/
%U https://doi.org/10.18653/v1/P18-1110
%P 1190-1199
Markdown (Informal)
[Extending a Parser to Distant Domains Using a Few Dozen Partially Annotated Examples](https://aclanthology.org/P18-1110/) (Joshi et al., ACL 2018)
ACL