@inproceedings{zhang-etal-2018-conversations,
title = "Conversations Gone Awry: Detecting Early Signs of Conversational Failure",
author = "Zhang, Justine and
Chang, Jonathan and
Danescu-Niculescu-Mizil, Cristian and
Dixon, Lucas and
Hua, Yiqing and
Taraborelli, Dario and
Thain, Nithum",
editor = "Gurevych, Iryna and
Miyao, Yusuke",
booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P18-1125",
doi = "10.18653/v1/P18-1125",
pages = "1350--1361",
abstract = "One of the main challenges online social systems face is the prevalence of antisocial behavior, such as harassment and personal attacks. In this work, we introduce the task of predicting from the very start of a conversation whether it will get out of hand. As opposed to detecting undesirable behavior after the fact, this task aims to enable early, actionable prediction at a time when the conversation might still be salvaged. To this end, we develop a framework for capturing pragmatic devices{---}such as politeness strategies and rhetorical prompts{---}used to start a conversation, and analyze their relation to its future trajectory. Applying this framework in a controlled setting, we demonstrate the feasibility of detecting early warning signs of antisocial behavior in online discussions.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-etal-2018-conversations">
<titleInfo>
<title>Conversations Gone Awry: Detecting Early Signs of Conversational Failure</title>
</titleInfo>
<name type="personal">
<namePart type="given">Justine</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">Chang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cristian</namePart>
<namePart type="family">Danescu-Niculescu-Mizil</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucas</namePart>
<namePart type="family">Dixon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yiqing</namePart>
<namePart type="family">Hua</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dario</namePart>
<namePart type="family">Taraborelli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nithum</namePart>
<namePart type="family">Thain</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yusuke</namePart>
<namePart type="family">Miyao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>One of the main challenges online social systems face is the prevalence of antisocial behavior, such as harassment and personal attacks. In this work, we introduce the task of predicting from the very start of a conversation whether it will get out of hand. As opposed to detecting undesirable behavior after the fact, this task aims to enable early, actionable prediction at a time when the conversation might still be salvaged. To this end, we develop a framework for capturing pragmatic devices—such as politeness strategies and rhetorical prompts—used to start a conversation, and analyze their relation to its future trajectory. Applying this framework in a controlled setting, we demonstrate the feasibility of detecting early warning signs of antisocial behavior in online discussions.</abstract>
<identifier type="citekey">zhang-etal-2018-conversations</identifier>
<identifier type="doi">10.18653/v1/P18-1125</identifier>
<location>
<url>https://aclanthology.org/P18-1125</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>1350</start>
<end>1361</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Conversations Gone Awry: Detecting Early Signs of Conversational Failure
%A Zhang, Justine
%A Chang, Jonathan
%A Danescu-Niculescu-Mizil, Cristian
%A Dixon, Lucas
%A Hua, Yiqing
%A Taraborelli, Dario
%A Thain, Nithum
%Y Gurevych, Iryna
%Y Miyao, Yusuke
%S Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F zhang-etal-2018-conversations
%X One of the main challenges online social systems face is the prevalence of antisocial behavior, such as harassment and personal attacks. In this work, we introduce the task of predicting from the very start of a conversation whether it will get out of hand. As opposed to detecting undesirable behavior after the fact, this task aims to enable early, actionable prediction at a time when the conversation might still be salvaged. To this end, we develop a framework for capturing pragmatic devices—such as politeness strategies and rhetorical prompts—used to start a conversation, and analyze their relation to its future trajectory. Applying this framework in a controlled setting, we demonstrate the feasibility of detecting early warning signs of antisocial behavior in online discussions.
%R 10.18653/v1/P18-1125
%U https://aclanthology.org/P18-1125
%U https://doi.org/10.18653/v1/P18-1125
%P 1350-1361
Markdown (Informal)
[Conversations Gone Awry: Detecting Early Signs of Conversational Failure](https://aclanthology.org/P18-1125) (Zhang et al., ACL 2018)
ACL
- Justine Zhang, Jonathan Chang, Cristian Danescu-Niculescu-Mizil, Lucas Dixon, Yiqing Hua, Dario Taraborelli, and Nithum Thain. 2018. Conversations Gone Awry: Detecting Early Signs of Conversational Failure. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1350–1361, Melbourne, Australia. Association for Computational Linguistics.