@inproceedings{yu-etal-2018-neural,
title = "A Neural Approach to Pun Generation",
author = "Yu, Zhiwei and
Tan, Jiwei and
Wan, Xiaojun",
editor = "Gurevych, Iryna and
Miyao, Yusuke",
booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P18-1153/",
doi = "10.18653/v1/P18-1153",
pages = "1650--1660",
abstract = "Automatic pun generation is an interesting and challenging text generation task. Previous efforts rely on templates or laboriously manually annotated pun datasets, which heavily constrains the quality and diversity of generated puns. Since sequence-to-sequence models provide an effective technique for text generation, it is promising to investigate these models on the pun generation task. In this paper, we propose neural network models for homographic pun generation, and they can generate puns without requiring any pun data for training. We first train a conditional neural language model from a general text corpus, and then generate puns from the language model with an elaborately designed decoding algorithm. Automatic and human evaluations show that our models are able to generate homographic puns of good readability and quality."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yu-etal-2018-neural">
<titleInfo>
<title>A Neural Approach to Pun Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zhiwei</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiwei</namePart>
<namePart type="family">Tan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaojun</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yusuke</namePart>
<namePart type="family">Miyao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Automatic pun generation is an interesting and challenging text generation task. Previous efforts rely on templates or laboriously manually annotated pun datasets, which heavily constrains the quality and diversity of generated puns. Since sequence-to-sequence models provide an effective technique for text generation, it is promising to investigate these models on the pun generation task. In this paper, we propose neural network models for homographic pun generation, and they can generate puns without requiring any pun data for training. We first train a conditional neural language model from a general text corpus, and then generate puns from the language model with an elaborately designed decoding algorithm. Automatic and human evaluations show that our models are able to generate homographic puns of good readability and quality.</abstract>
<identifier type="citekey">yu-etal-2018-neural</identifier>
<identifier type="doi">10.18653/v1/P18-1153</identifier>
<location>
<url>https://aclanthology.org/P18-1153/</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>1650</start>
<end>1660</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Neural Approach to Pun Generation
%A Yu, Zhiwei
%A Tan, Jiwei
%A Wan, Xiaojun
%Y Gurevych, Iryna
%Y Miyao, Yusuke
%S Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F yu-etal-2018-neural
%X Automatic pun generation is an interesting and challenging text generation task. Previous efforts rely on templates or laboriously manually annotated pun datasets, which heavily constrains the quality and diversity of generated puns. Since sequence-to-sequence models provide an effective technique for text generation, it is promising to investigate these models on the pun generation task. In this paper, we propose neural network models for homographic pun generation, and they can generate puns without requiring any pun data for training. We first train a conditional neural language model from a general text corpus, and then generate puns from the language model with an elaborately designed decoding algorithm. Automatic and human evaluations show that our models are able to generate homographic puns of good readability and quality.
%R 10.18653/v1/P18-1153
%U https://aclanthology.org/P18-1153/
%U https://doi.org/10.18653/v1/P18-1153
%P 1650-1660
Markdown (Informal)
[A Neural Approach to Pun Generation](https://aclanthology.org/P18-1153/) (Yu et al., ACL 2018)
ACL
- Zhiwei Yu, Jiwei Tan, and Xiaojun Wan. 2018. A Neural Approach to Pun Generation. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1650–1660, Melbourne, Australia. Association for Computational Linguistics.