@inproceedings{groschwitz-etal-2018-amr,
title = "{AMR} dependency parsing with a typed semantic algebra",
author = "Groschwitz, Jonas and
Lindemann, Matthias and
Fowlie, Meaghan and
Johnson, Mark and
Koller, Alexander",
editor = "Gurevych, Iryna and
Miyao, Yusuke",
booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P18-1170",
doi = "10.18653/v1/P18-1170",
pages = "1831--1841",
abstract = "We present a semantic parser for Abstract Meaning Representations which learns to parse strings into tree representations of the compositional structure of an AMR graph. This allows us to use standard neural techniques for supertagging and dependency tree parsing, constrained by a linguistically principled type system. We present two approximative decoding algorithms, which achieve state-of-the-art accuracy and outperform strong baselines.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="groschwitz-etal-2018-amr">
<titleInfo>
<title>AMR dependency parsing with a typed semantic algebra</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jonas</namePart>
<namePart type="family">Groschwitz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthias</namePart>
<namePart type="family">Lindemann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Meaghan</namePart>
<namePart type="family">Fowlie</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mark</namePart>
<namePart type="family">Johnson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Koller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yusuke</namePart>
<namePart type="family">Miyao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a semantic parser for Abstract Meaning Representations which learns to parse strings into tree representations of the compositional structure of an AMR graph. This allows us to use standard neural techniques for supertagging and dependency tree parsing, constrained by a linguistically principled type system. We present two approximative decoding algorithms, which achieve state-of-the-art accuracy and outperform strong baselines.</abstract>
<identifier type="citekey">groschwitz-etal-2018-amr</identifier>
<identifier type="doi">10.18653/v1/P18-1170</identifier>
<location>
<url>https://aclanthology.org/P18-1170</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>1831</start>
<end>1841</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T AMR dependency parsing with a typed semantic algebra
%A Groschwitz, Jonas
%A Lindemann, Matthias
%A Fowlie, Meaghan
%A Johnson, Mark
%A Koller, Alexander
%Y Gurevych, Iryna
%Y Miyao, Yusuke
%S Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F groschwitz-etal-2018-amr
%X We present a semantic parser for Abstract Meaning Representations which learns to parse strings into tree representations of the compositional structure of an AMR graph. This allows us to use standard neural techniques for supertagging and dependency tree parsing, constrained by a linguistically principled type system. We present two approximative decoding algorithms, which achieve state-of-the-art accuracy and outperform strong baselines.
%R 10.18653/v1/P18-1170
%U https://aclanthology.org/P18-1170
%U https://doi.org/10.18653/v1/P18-1170
%P 1831-1841
Markdown (Informal)
[AMR dependency parsing with a typed semantic algebra](https://aclanthology.org/P18-1170) (Groschwitz et al., ACL 2018)
ACL
- Jonas Groschwitz, Matthias Lindemann, Meaghan Fowlie, Mark Johnson, and Alexander Koller. 2018. AMR dependency parsing with a typed semantic algebra. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1831–1841, Melbourne, Australia. Association for Computational Linguistics.