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Abstract

We study the task of generating from
Wikipedia articles question-answer pairs
that cover content beyond a single sen-
tence. We propose a neural network
approach that incorporates coreference
knowledge via a novel gating mechanism.
Compared to models that only take into
account sentence-level information (Heil-
man and Smith, 2010; Du et al., 2017;
Zhou et al., 2017), we find that the lin-
guistic knowledge introduced by the coref-
erence representation aids question gen-
eration significantly, producing models
that outperform the current state-of-the-
art. We apply our system (composed of
an answer span extraction system and the
passage-level QG system) to the 10,000
top-ranking Wikipedia articles and create
a corpus of over one million question-
answer pairs. We also provide a qualita-
tive analysis for this large-scale generated
corpus from Wikipedia.

1 Introduction

Recently, there has been a resurgence of work in
NLP on reading comprehension (Hermann et al.,
2015; Rajpurkar et al., 2016; Joshi et al., 2017)
with the goal of developing systems that can an-
swer questions about the content of a given pas-
sage or document. Large-scale QA datasets are in-
dispensable for training expressive statistical mod-
els for this task and play a critical role in ad-
vancing the field. And there have been a num-
ber of efforts in this direction. Miller et al. (2016),
for example, develop a dataset for open-domain
question answering; Rajpurkar et al. (2016) and
Joshi et al. (2017) do so for reading comprehen-
sion (RC); and Hill et al. (2015) and Hermann

Paragraph:
(1)Tesla was renowned for his achievements
and showmanship, eventually earning him a
reputation in popular culture as an archetypal
"mad scientist". (2)His patents earned him a
considerable amount of money, much of which
was used to finance his own projects with vary-
ing degrees of success. (3)He lived most of his
life in a series of New York hotels, through his
retirement. (4)Tesla died on 7 January 1943. ...

Questions:

– What was Tesla’s reputation in popular cul-
ture?

mad scientist

– How did Tesla finance his work?
patents

– Where did Tesla live for much of his life?
New York hotels

Figure 1: Example input from the fourth para-
graph of a Wikipedia article on Nikola Tesla,
along with the natural questions and their answers
from the SQuAD (Rajpurkar et al., 2016) dataset.
We show in italics the set of mentions that refer to
Nikola Tesla — Tesla, him, his, he, etc.

et al. (2015), for the related task of answering
cloze questions (Winograd, 1972; Levesque et al.,
2011). To create these datasets, either crowd-
sourcing or (semi-)synthetic approaches are used.
The (semi-)synthetic datasets (e.g., Hermann et al.
(2015)) are large in size and cheap to obtain;
however, they do not share the same characteris-
tics as explicit QA/RC questions (Rajpurkar et al.,
2016). In comparison, high-quality crowdsourced
datasets are much smaller in size, and the anno-
tation process is quite expensive because the la-
beled examples require expertise and careful de-
sign (Chen et al., 2016).
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Thus, there is a need for methods that can au-
tomatically generate high-quality question-answer
pairs. Serban et al. (2016) propose the use of re-
current neural networks to generate QA pairs from
structured knowledge resources such as Freebase.
Their work relies on the existence of automatically
acquired KBs, which are known to have errors and
suffer from incompleteness. They are also non-
trivial to obtain. In addition, the questions in the
resulting dataset are limited to queries regarding a
single fact (i.e., tuple) in the KB.

Motivated by the need for large scale QA
pairs and the limitations of recent work, we in-
vestigate methods that can automatically “har-
vest” (generate) question-answer pairs from raw
text/unstructured documents, such as Wikipedia-
type articles.

Recent work along these lines (Du et al., 2017;
Zhou et al., 2017) (see Section 2) has proposed
the use of attention-based recurrent neural models
trained on the crowdsourced SQuAD dataset (Ra-
jpurkar et al., 2016) for question generation.
While successful, the resulting QA pairs are based
on information from a single sentence. As de-
scribed in Du et al. (2017), however, nearly 30%
of the questions in the human-generated questions
of SQuAD rely on information beyond a single
sentence. For example, in Figure 1, the second
and third questions require coreference informa-
tion (i.e., recognizing that “His” in sentence 2 and
“He” in sentence 3 both corefer with “Tesla” in
sentence 1) to answer them.

Thus, our research studies methods for incor-
porating coreference information into the train-
ing of a question generation system. In particu-
lar, we propose gated Coreference knowledge for
Neural Question Generation (CorefNQG), a neu-
ral sequence model with a novel gating mecha-
nism that leverages continuous representations of
coreference clusters — the set of mentions used
to refer to each entity — to better encode lin-
guistic knowledge introduced by coreference, for
paragraph-level question generation.

In an evaluation using the SQuAD dataset, we
find that CorefNQG enables better question gen-
eration. It outperforms significantly the baseline
neural sequence models that encode information
from a single sentence, and a model that encodes
all preceding context and the input sentence itself.
When evaluated on only the portion of SQuAD
that requires coreference resolution, the gap be-

tween our system and the baseline systems is even
larger.

By applying our approach to the 10,000 top-
ranking Wikipedia articles, we obtain a ques-
tion answering/reading comprehension dataset
with over one million QA pairs; we provide a
qualitative analysis in Section 6. The dataset
and the source code for the system are avail-
able at https://github.com/xinyadu/
HarvestingQA.

2 Related Work

2.1 Question Generation

Since the work by Rus et al. (2010), question gen-
eration (QG) has attracted interest from both the
NLP and NLG communities. Most early work in
QG employed rule-based approaches to transform
input text into questions, usually requiring the ap-
plication of a sequence of well-designed general
rules or templates (Mitkov and Ha, 2003; Labu-
tov et al., 2015). Heilman and Smith (2010) intro-
duced an overgenerate-and-rank approach: their
system generates a set of questions and then ranks
them to select the top candidates. Apart from
generating questions from raw text, there has also
been research on question generation from sym-
bolic representations (Yao et al., 2012; Olney
et al., 2012).

With the recent development of deep repre-
sentation learning and large QA datasets, there
has been research on recurrent neural network
based approaches for question generation. Ser-
ban et al. (2016) used the encoder-decoder frame-
work to generate QA pairs from knowledge base
triples; Reddy et al. (2017) generated questions
from a knowledge graph; Du et al. (2017) studied
how to generate questions from sentences using
an attention-based sequence-to-sequence model
and investigated the effect of exploiting sentence-
vs. paragraph-level information. Du and Cardie
(2017) proposed a hierarchical neural sentence-
level sequence tagging model for identifying
question-worthy sentences in a text passage. Fi-
nally, Duan et al. (2017) investigated how to use
question generation to help improve question an-
swering systems on the sentence selection subtask.

In comparison to the related methods from
above that generate questions from raw text, our
method is different in its ability to take into ac-
count contextual information beyond the sentence-
level by introducing coreference knowledge.

https://github.com/xinyadu/HarvestingQA
https://github.com/xinyadu/HarvestingQA


1909

2.2 Question Answering Datasets and
Creation

Recently there has been an increasing interest
in question answering with the creation of many
datasets. Most are built using crowdsourcing; they
are generally comprised of fewer than 100,000
QA pairs and are time-consuming to create. We-
bQuestions (Berant et al., 2013), for example, con-
tains 5,810 questions crawled via the Google Sug-
gest API and is designed for knowledge base QA
with answers restricted to Freebase entities. To
tackle the size issues associated with WebQues-
tions, Bordes et al. (2015) introduce SimpleQues-
tions, a dataset of 108,442 questions authored by
English speakers. SQuAD (Rajpurkar et al., 2016)
is a dataset for machine comprehension; it is cre-
ated by showing a Wikipedia paragraph to hu-
man annotators and asking them to write questions
based on the paragraph. TriviaQA (Joshi et al.,
2017) includes 95k question-answer authored by
trivia enthusiasts and corresponding evidence doc-
uments.

(Semi-)synthetic generated datasets are easier to
build to large-scale (Hill et al., 2015; Hermann
et al., 2015). They usually come in the form
of cloze-style questions. For example, Hermann
et al. (2015) created over a million examples by
pairing CNN and Daily Mail news articles with
their summarized bullet points. Chen et al. (2016)
showed that this dataset is quite noisy due to the
method of data creation and concluded that per-
formance of QA systems on the dataset is almost
saturated.

Closest to our work is that of Serban et al.
(2016). They train a neural triple-to-sequence
model on SimpleQuestions, and apply their sys-
tem to Freebase to produce a large collection of
human-like question-answer pairs.

3 Task Definition

Our goal is to harvest high quality question-
answer pairs from the paragraphs of an article
of interest. In our task formulation, this con-
sists of two steps: candidate answer extrac-
tion and answer-specific question generation.
Given an input paragraph, we first identify a
set of question-worthy candidate answers ans =
(ans1, ans2, ..., ansl), each a span of text as de-
noted in color in Figure 1. For each candidate an-
swer ansi, we then aim to generate a question Q
— a sequence of tokens y1, ..., yN — based on the

sentence S that contains candidate ansi such that:

• Q asks about an aspect of ansi that is of po-
tential interest to a human;

• Q might rely on information from sentences
that precede S in the paragraph.

Mathematically then,

Q = argmax
Q

P (Q|S,C) (1)

where P (Q|S,C) =
∏N

n=1 P (yn|y<n, S, C)
where C is the set of sentences that precede S in
the paragraph.

4 Methodology

In this section, we introduce our framework for
harvesting the question-answer pairs. As de-
scribed above, it consists of the question generator
CorefNQG (Figure 2) and a candidate answer ex-
traction module. During test/generation time, we
(1) run the answer extraction module on the input
text to obtain answers, and then (2) run the ques-
tion generation module to obtain the correspond-
ing questions.

4.1 Question Generation
As shown in Figure 2, our generator prepares
the feature-rich input embedding — a concate-
nation of (a) a refined coreference position fea-
ture embedding, (b) an answer feature embedding,
and (c) a word embedding, each of which is de-
scribed below. It then encodes the textual input
using an LSTM unit (Hochreiter and Schmidhu-
ber, 1997). Finally, an attention-copy equipped
decoder is used to decode the question.

More specifically, given the input sentence S
(containing an answer span) and the preceding
context C, we first run a coreference resolution
system to get the coref-clusters for S and C
and use them to create a coreference transformed
input sentence: for each pronoun, we append
its most representative non-pronominal coreferent
mention. Specifically, we apply the simple feed-
forward network based mention-ranking model of
Clark and Manning (2016) to the concatenation
of C and S to get the coref-clusters for all en-
tities in C and S. The C&M model produces
a score/representation s for each mention pair
(m1,m2),

s(m1,m2) = Wmhm(m1,m2) + bm (2)
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Figure 2: The gated Coreference knowledge for Neural Question Generation (CorefNQG) Model.

word they the panthers defeated the arizona cardinals 49 – 15 ...
ans. feature O O O O B_ANS I_ANS I_ANS O O O ...
coref. feature B_PRO B_ANT I_ANT O O O O O O O ...

Table 1: Example input sentence with coreference and answer position features. The corresponding gold
question is “What team did the Panthers defeat in the NFC championship game ?”

where Wm is a 1 × d weight matrix and b is the
bias. hm(m1,m2) is representation of the last hid-
den layer of the three layer feedforward neural net-
work.

For each pronoun in S, we then heuristically
identify the most “representative” antecedent from
its coref-cluster. (Proper nouns are preferred.) We
append the new mention after the pronoun. For ex-
ample, in Table 1, “the panthers” is the most rep-
resentative mention in the coref-cluster for “they”.
The new sentence with the appended coreferent
mention is our coreference transformed input sen-
tence S

′
(see Figure 2).

Coreference Position Feature Embedding For
each token in S

′
, we also maintain one position

feature fc = (c1, ..., cn), to denote pronouns (e.g.,
“they”) and antecedents (e.g., “the panthers”). We
use the BIO tagging scheme to label the associ-
ated spans in S

′
. “B_ANT” denotes the start of an

antecedent span, tag “I_ANT” continues the an-
tecedent span and tag “O” marks tokens that do
not form part of a mention span. Similarly, tags
“B_PRO” and “I_PRO” denote the pronoun span.
(See Table 1, “coref. feature”.)

Refined Coref. Position Feature Embedding
Inspired by the success of gating mecha-

nisms for controlling information flow in neu-
ral networks (Hochreiter and Schmidhuber, 1997;
Dauphin et al., 2017), we propose to use a gat-
ing network here to obtain a refined representa-
tion of the coreference position feature vectors
fc = (c1, ..., cn). The main idea is to uti-
lize the mention-pair score (see Equation 2) to
help the neural network learn the importance of
the coreferent phrases. We compute the refined
(gated) coreference position feature vector fd =
(d1, ..., dn) as follows,

gi = ReLU(Waci +Wbscorei + b)

di = gi � ci
(3)

where � denotes an element-wise product be-
tween two vectors and ReLU is the rectified linear
activation function. scorei denotes the mention-
pair score for each antecedent token (e.g., “the”
and “panthers”) with the pronoun (e.g., “they”);
scorei is obtained from the trained model (Equa-
tion 2) of the C&M. If token i is not added later
as an antecedent token, scorei is set to zero. Wa,
Wb are weight matrices and b is the bias vector.

Answer Feature Embedding We also include
an answer position feature embedding to gener-
ate answer-specific questions; we denote the an-
swer span with the usual BIO tagging scheme (see,
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e.g., “the arizona cardinals” in Table 1). During
training and testing, the answer span feature (i.e.,
“B_ANS”, “I_ANS” or “O”) is mapped to its fea-
ture embedding space: fa = (a1, ..., an).

Word Embedding To obtain the word em-
bedding for the tokens themselves, we just map
the tokens to the word embedding space: x =
(x1, ..., xn).

Final Encoder Input As noted above, the fi-
nal input to the LSTM-based encoder is a concate-
nation of (1) the refined coreference position fea-
ture embedding (light blue units in Figure 2), (2)
the answer position feature embedding (red units),
and (3) the word embedding for the token (green
units),

ei = concat(di, ai, xi) (4)

Encoder As for the encoder itself, we use bidi-
rectional LSTMs to read the input e = (e1, ..., en)
in both the forward and backward directions. Af-
ter encoding, we obtain two sequences of hid-
den vectors, namely,

−→
h = (

−→
h1, ...,

−→
hn) and

←−
h =

(
←−
h1, ...,

←−
hn). The final output state of the encoder

is the concatenation of
−→
h and

←−
h where

hi = concat(
−→
hi ,
←−
hi) (5)

Question Decoder with Attention & Copy On
top of the feature-rich encoder, we use LSTMs
with attention (Bahdanau et al., 2015) as the de-
coder for generating the question y1, ..., ym one
token at a time. To deal with rare/unknown words,
the decoder also allows directly copying words
from the source sentence via pointing (Vinyals
et al., 2015).

At each time step t, the decoder LSTM reads
the previous word embedding wt−1 and previous
hidden state st−1 to compute the new hidden state,

st = LSTM(wt−1, st−1) (6)
Then we calculate the attention distribution αt as
in Bahdanau et al. (2015),

et,i = hTi Wcst−1

αt = softmax(et)
(7)

where Wc is a weight matrix and attention dis-
tribution αt is a probability distribution over the
source sentence words. With αt, we can obtain
the context vector h∗t ,

h∗t =
n∑

i=1

αi
thi (8)

Then, using the context vector h∗t and hidden
state st, the probability distribution over the target
(question) side vocabulary is calculated as,

Pvocab = softmax(Wdconcat(h∗t , st)) (9)

Instead of directly using Pvocab for train-
ing/generating with the fixed target side vocabu-
lary, we also consider copying from the source
sentence. The copy probability is based on the
context vector h∗t and hidden state st,

λcopyt = σ (Weh
∗
t +Wfst) (10)

and the probability distribution over the source
sentence words is the sum of the attention scores
of the corresponding words,

Pcopy(w) =

n∑
i=1

αi
t ∗ 1{w == wi} (11)

Finally, we obtain the probability distribution over
the dynamic vocabulary (i.e., union of original tar-
get side and source sentence vocabulary) by sum-
ming over Pcopy and Pvocab,

P (w) = λcopyt Pcopy(w) + (1− λcopyt )Pvocab(w)
(12)

where σ is the sigmoid function, and Wd, We,
Wf are weight matrices.

4.2 Answer Span Identification
We frame the problem of identifying candidate an-
swer spans from a paragraph as a sequence label-
ing task and base our model on the BiLSTM-CRF
approach for named entity recognition (Huang
et al., 2015). Given a paragraph of n tokens, in-
stead of directly feeding the sequence of word
vectors x = (x1, ..., xn) to the LSTM units, we
first construct the feature-rich embedding x

′
for

each token, which is the concatenation of the word
embedding, an NER feature embedding, and a
character-level representation of the word (Lam-
ple et al., 2016). We use the concatenated vector
as the “final” embedding x

′
for the token,

x
′
i = concat(xi,CharRepi,NERi) (13)

where CharRepi is the concatenation of the last
hidden states of a character-based biLSTM. The
intuition behind the use of NER features is that
SQuAD answer spans contain a large number of
named entities, numeric phrases, etc.

Then a multi-layer Bi-directional LSTM is ap-
plied to (x

′
1, ..., x

′
n) and we obtain the output state
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zt for time step t by concatenation of the hid-
den states (forward and backward) at time step
t from the last layer of the BiLSTM. We apply
the softmax to (z1, ..., zn) to get the normalized
score representation for each token, which is of
size n× k, where k is the number of tags.

Instead of using a softmax training objective
that minimizes the cross-entropy loss for each
individual word, the model is trained with a
CRF (Lafferty et al., 2001) objective, which min-
imizes the negative log-likelihood for the entire
correct sequence: − log(py),

py =
exp(q(x

′
,y))∑

y′∈Y′ exp(q(x′ ,y′))
(14)

where q(x
′
,y) =

∑n
t=1 Pt,yt +

∑n−1
t=0 Ayt,yt+1 ,

Pt,yt is the score of assigning tag yt to the tth to-
ken, and Ayt,yt+1 is the transition score from tag
yt to yt+1, the scoring matrix A is to be learned.
Y
′

represents all the possible tagging sequences.

5 Experiments

5.1 Dataset

We use the SQuAD dataset (Rajpurkar et al., 2016)
to train our models. It is one of the largest gen-
eral purpose QA datasets derived from Wikipedia
with over 100k questions posed by crowdwork-
ers on a set of Wikipedia articles. The answer to
each question is a segment of text from the corre-
sponding Wiki passage. The crowdworkers were
users of Amazon’s Mechanical Turk located in the
US or Canada. To obtain high-quality articles, the
authors sampled 500 articles from the top 10,000
articles obtained by Nayuki’s Wikipedia’s inter-
nal PageRanks. The question-answer pairs were
generated by annotators from a paragraph; and
although the dataset is typically used to evaluate
reading comprehension, it has also been used in an
open domain QA setting (Chen et al., 2017; Wang
et al., 2018). For training/testing answer extrac-
tion systems, we pair each paragraph in the dataset
with the gold answer spans that it contains. For the
question generation system, we pair each sentence
that contains an answer span with the correspond-
ing gold question as in Du et al. (2017).

To quantify the effect of using predicted (rather
than gold standard) answer spans on question gen-
eration (e.g., predicted answer span boundaries
can be inaccurate), we also train the models on
an augmented “Training set w/ noisy examples”

(see Table 2). This training set contains all of the
original training examples plus new examples for
predicted answer spans (from the top-performing
answer extraction model, bottom row of Table 3)
that overlap with a gold answer span. We pair the
new training sentence (w/ predicted answer span)
with the gold question. The added examples com-
prise 42.21% of the noisy example training set.

For generation of our one million QA pair cor-
pus, we apply our systems to the 10,000 top-
ranking articles of Wikipedia.

5.2 Evaluation Metrics

For question generation evaluation, we use
BLEU (Papineni et al., 2002) and ME-
TEOR (Denkowski and Lavie, 2014).1 BLEU
measures average n-gram precision vs. a set of
reference questions and penalizes for overly short
sentences. METEOR is a recall-oriented metric
that takes into account synonyms, stemming, and
paraphrases.

For answer candidate extraction evaluation, we
use precision, recall and F-measure vs. the gold
standard SQuAD answers. Since answer bound-
aries are sometimes ambiguous, we compute Bi-
nary Overlap and Proportional Overlap metrics in
addition to Exact Match. Binary Overlap counts
every predicted answer that overlaps with a gold
answer span as correct, and Proportional Overlap
give partial credit proportional to the amount of
overlap (Johansson and Moschitti, 2010; Irsoy and
Cardie, 2014).

5.3 Baselines and Ablation Tests

For question generation, we compare to the state-
of-the-art baselines and conduct ablation tests
as follows: Du et al. (2017)’s model is an
attention-based RNN sequence-to-sequence neu-
ral network (without using the answer location in-
formation feature). Seq2seq + copyw/ answer is the
attention-based sequence-to-sequence model aug-
mented with a copy mechanism, with answer fea-
tures concatenated with the word embeddings dur-
ing encoding. Seq2seq + copyw/ full context + answer
is the same model as the previous one, but we al-
low access to the full context (i.e., all the preced-
ing sentences and the input sentence itself). We
denote it as ContextNQG henceforth for simplic-
ity. CorefNQG is the coreference-based model
proposed in this paper. CorefNQG–gating is an

1We use the evaluation scripts of Du et al. (2017).
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Models Training set Training set w/ noisy examples

BLEU-3 BLEU-4 METEOR BLEU-3 BLEU-4 METEOR

Baseline (Du et al., 2017) (w/o answer) 17.50 12.28 16.62 15.81 10.78 15.31
Seq2seq + copy (w/ answer) 20.01 14.31 18.50 19.61 13.96 18.19
ContextNQG: Seq2seq + copy

(w/ full context + answer)
20.31 14.58 18.84 19.57 14.05 18.19

CorefNQG 20.90 15.16 19.12 20.19 14.52 18.59
- gating 20.68 14.84 18.98 20.08 14.40 18.64
- mention-pair score 20.56 14.75 18.85 19.73 14.13 18.38

Table 2: Evaluation results for question generation.

Models Precision Recall F-measure

Prop. Bin. Exact Prop. Bin. Exact Prop. Bin. Exact

NER 24.54 25.94 12.77 58.20 67.66 38.52 34.52 37.50 19.19
BiLSTM 43.54 45.08 22.97 28.43 35.99 18.87 34.40 40.03 20.71
BiLSTM w/ NER 44.35 46.02 25.33 33.30 40.81 23.32 38.04 43.26 24.29
BiLSTM-CRF w/ char 49.35 51.92 38.58 30.53 32.75 24.04 37.72 40.16 29.62
BiLSTM-CRF w/ char w/ NER 45.96 51.61 33.90 41.05 43.98 28.37 43.37 47.49 30.89

Table 3: Evaluation results of answer extraction systems.

ablation test, the gating network is removed and
the coreference position embedding is not refined.
CorefNQG–mention-pair score is also an abla-
tion test where all mention-pair scorei are set to
zero.

For answer span extraction, we conduct exper-
iments to compare the performance of an off-the-
shelf NER system and BiLSTM based systems.

For training and implementation details,
please see the Supplementary Material.

6 Results and Analysis

6.1 Automatic Evaluation
Table 2 shows the BLEU-{3, 4} and METEOR
scores of different models. Our CorefNQG out-
performs the seq2seq baseline of Du et al. (2017)
by a large margin. This shows that the copy
mechanism, answer features and coreference res-
olution all aid question generation. In addi-
tion, CorefNQG outperforms both Seq2seq+Copy
models significantly, whether or not they have ac-
cess to the full context. This demonstrates that
the coreference knowledge encoded with the gat-
ing network explicitly helps with the training and
generation: it is more difficult for the neural se-
quence model to learn the coreference knowledge
in a latent way. (See input 1 in Figure 3 for an ex-
ample.) Building end-to-end models that take into
account coreference knowledge in a latent way is
an interesting direction to explore. In the ablation
tests, the performance drop of CorefNQG–gating

BLEU-3 BLEU-4 METEOR

Seq2seq + copy
(w/ ans.) 17.81 12.30 17.11

ContextNQG 18.05 12.53 17.33
CorefNQG 18.46 12.96 17.58

Table 4: Evaluation results for question generation
on the portion that requires coreference knowledge
(36.42% examples of the original test set).

shows that the gating network is playing an impor-
tant role for getting refined coreference position
feature embedding, which helps the model learn
the importance of an antecedent. The performance
drop of CorefNQG–mention-pair score shows the
mention-pair score introduced from the external
system (Clark and Manning, 2016) helps the neu-
ral network better encode coreference knowledge.

To better understand the effect of coreference
resolution, we also evaluate our model and the
baseline models on just that portion of the test set
that requires pronoun resolution (36.42% of the
examples) and show the results in Table 4. The
gaps of performance between our model and the
baseline models are still significant. Besides, we
see that all three systems’ performance drop on
this partial test set, which demonstrates the hard-
ness of generating questions for the cases that re-
quire pronoun resolution (passage context).

We also show in Table 2 the results of the
QG models trained on the training set augmented
with noisy examples with predicted answer spans.
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Input 1: The elizabethan navigator, sir francis drake
was born in the nearby town of tavistock and was the
mayor of plymouth. ... .

::
he

:::
died

::
of
::::::::

dysentery
::
in

::::
1596

::
off

:::
the

::::
coast

::
of

:::::
puerto

:::
rico.

Human: In what year did Sir Francis Drake die ?
ContextNQG: When did he die ?
CorefNQG: When did sir francis drake die ?

Input 2: american idol is an american singing compe-
tition ... .

:
it
:::::
began

:::::
airing

::
on

:::
fox

:::
on

:
june 11 , 2002,

:
as
:::

an
::::::
addition

::
to
:::

the
::::
idols

::::::
format

:::::
based

::
on

:::
the

:::::
british

::::
series

:::
pop

::::
idol

:::
and

:::
has

::::
since

:::::::
become

:::
one

::
of

:::
the

::::
most

:::::::
successful

:::::
shows

::
in

:::
the

:::::
history

::
of

:::::::
american

::::::::
television.

Human: When did american idol first air on tv ?
ContextNQG: When did fox begin airing ?
CorefNQG: When did american idol begin airing ?

Input 3: ... the a38 dual-carriageway runs from east
to west across the north of the city .

:::::
within

:::
the

:::
city

:
it
::
is

::::::::
designated

::
as
::

‘ the parkway
:
’
:::
and

::::::::
represents

:::
the

:::::::
boundary

::::::
between

:::
the

:::::
urban

::::
parts

:::
of

::
the

::::
city

:::
and

:::
the

:::::::
generally

::::
more

:::::
recent

:::::::
suburban

::::
areas

:
.

Human: What is the a38 called inside the city ?
ContextNQG: What is another name for the city ?
CorefNQG: What is the city designated as ?

Figure 3: Example questions (with answers high-
lighted) generated by human annotators (ground
truth questions), by our system CorefNQG, and by
the Seq2seq+Copy model trained with full context
(i.e., ContextNQG).

There is a consistent but acceptable drop for each
model on this new training set, given the inac-
curacy of predicted answer spans. We see that
CorefNQG still outperforms the baseline models
across all metrics.

Figure 3 provides sample output for input sen-
tences that require contextual coreference knowl-
edge. We see that ContextNQG fails in all cases;
our model misses only the third example due to an
error introduced by coreference resolution — the
“city” and “it” are considered coreferent. We can
also see that human-generated questions are more
natural and varied in form with better paraphras-
ing.

In Table 3, we show the evaluation results for
different answer extraction models. First we see
that all variants of BiLSTM models outperform
the off-the-shelf NER system (that proposes all
NEs as answer spans), though the NER system has
a higher recall. The BiLSTM-CRF that encodes
the character-level and NER features for each to-
ken performs best in terms of F-measure.

6.2 Human Study

We hired four native speakers of English to rate
the systems’ outputs. Detailed guidelines for the
raters are listed in the supplementary materials.

Grammaticality Making Sense Answerability Avg. rank

ContextNQG 3.793 3.836 3.892 1.768
CorefNQG 3.804* 3.847** 3.895* 1.762

Human 3.807 3.850 3.902 1.758

Table 5: Human evaluation results for question
generation. “Grammaticality”, “Making Sense” and “An-

swerability” are rated on a 1–5 scale (5 for the best, see the

supplementary materials for a detailed rating scheme), “Av-

erage rank” is rated on a 1–3 scale (1 for the most preferred,

ties are allowed.) Two-tailed t-test results are shown for our

method compared to ContextNQG (stat. significance is indi-

cated with ∗(p < 0.05), ∗∗(p < 0.01).)

The evaluation can also be seen as a measure of the
quality of the generated dataset (Section 6.3). We
randomly sampled 11 passages/paragraphs from
the test set; there are in total around 70 question-
answer pairs for evaluation.

We consider three metrics — “grammaticality”,
“making sense” and “answerability”. The evalu-
ators are asked to first rate the grammatical cor-
rectness of the generated question (before being
shown the associated input sentence or any other
textual context). Next, we ask them to rate the de-
gree to which the question “makes sense” given
the input sentence (i.e., without considering the
correctness of the answer span). Finally, evalua-
tors rate the “answerability” of the question given
the full context.

Table 5 shows the results of the human evalua-
tion. Bold indicates top scores. We see that the
original human questions are preferred over the
two NQG systems’ outputs, which is understand-
able given the examples in Figure 3. The human-
generated questions make more sense and corre-
spond better with the provided answers, particu-
larly when they require information in the preced-
ing context. How exactly to capture the preceding
context so as to ask better and more diverse ques-
tions is an interesting future direction for research.
In terms of grammaticality, however, the neural
models do quite well, achieving very close to hu-
man performance. In addition, we see that our
method (CorefNQG) performs statistically signif-
icantly better across all metrics in comparison to
the baseline model (ContextNQG), which has ac-
cess to the entire preceding context in the passage.

6.3 The Generated Corpus

Our system generates in total 1,259,691 question-
answer pairs, nearly 126 questions per article. Fig-
ure 5 shows the distribution of different types of
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Exact Match F-1

Dev Test Dev Test

DocReader (Chen et al., 2017) 82.33 81.65 88.20 87.79

Table 6: Performance of the neural machine read-
ing comprehension model (no initialization with
pretrained embeddings) on our generated corpus.

The United States of America (USA), commonly re-
ferred to as the United States (U.S.) or America, is a
federal republic composed of states, a federal district,
five major self-governing territories, and various pos-
sessions. ... . The territories are scattered about the
Pacific Ocean and the Caribbean Sea. Nine time zones
are covered. The geography, climate and wildlife of the
country are extremely diverse.
Q1: What is another name for the united states of amer-
ica ?
Q2: How many major territories are in the united states?
Q3: What are the territories scattered about ?

Figure 4: Example question-answer pairs from our
generated corpus.

questions in our dataset vs. the SQuAD training
set. We see that the distribution for “In what”,
“When”, “How long”, “Who”, “Where”, “What
does” and “What do” questions in the two datasets
is similar. Our system generates more “What
is”, “What was” and “What percentage” questions,
while the proportions of “What did”, “Why” and
“Which” questions in SQuAD are larger than ours.
One possible reason is that the “Why”, “What did”
questions are more complicated to ask (sometimes
involving world knowledge) and the answer spans
are longer phrases of various types that are harder
to identify. “What is” and “What was” questions,
on the other hand, are often safer for the neural
networks systems to ask.

In Figure 4, we show some examples of the gen-
erated question-answer pairs. The answer extrac-
tor identifies the answer span boundary well and
all three questions correspond to their answers. Q2
is valid but not entirely accurate. For more exam-
ples, please refer to our supplementary materials.

Table 6 shows the performance of a top-
performing system for the SQuAD dataset (Doc-
ument Reader (Chen et al., 2017)) when applied
to the development and test set portions of our
generated dataset. The system was trained on the
training set portion of our dataset. We use the
SQuAD evaluation scripts, which calculate exact
match (EM) and F-1 scores.2 Performance of the

2F-1 measures the average overlap between the predicted
answer span and ground truth answer (Rajpurkar et al., 2016).

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

in which

what has

how did

what can

how long

what year

what were

what do

why

how much

what type

what percentage

what does

what did

which

what are

in what

where

how many

when

what was

who

what is

SQuAD
Our corpus

Figure 5: Distribution of question types of our cor-
pus and SQuAD training set. The categories are
the ones used in Wang et al. (2016), we add one
more category: “what percentage”.

neural machine reading model is reasonable. We
also train the DocReader on our training set and
test the models’ performance on the original dev
set of SQuAD; for this, the performance is around
45.2% on EM and 56.7% on F-1 metric. DocRe-
ader trained on the original SQuAD training set
achieves 69.5% EM, 78.8% F-1 indicating that our
dataset is more difficult and/or less natural than the
crowd-sourced QA pairs of SQuAD.

7 Conclusion

We propose a new neural network model for better
encoding coreference knowledge for paragraph-
level question generation. Evaluations with dif-
ferent metrics on the SQuAD machine reading
dataset show that our model outperforms state-of-
the-art baselines. The ablation study shows the ef-
fectiveness of different components in our model.
Finally, we apply our question generation frame-
work to produce a corpus of 1.26 million question-
answer pairs, which we hope will benefit the QA
research community. It would also be interesting
to apply our approach to incorporating coreference
knowledge to other text generation tasks.
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