@inproceedings{lau-etal-2018-deep,
title = "Deep-speare: A joint neural model of poetic language, meter and rhyme",
author = "Lau, Jey Han and
Cohn, Trevor and
Baldwin, Timothy and
Brooke, Julian and
Hammond, Adam",
editor = "Gurevych, Iryna and
Miyao, Yusuke",
booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P18-1181",
doi = "10.18653/v1/P18-1181",
pages = "1948--1958",
abstract = "In this paper, we propose a joint architecture that captures language, rhyme and meter for sonnet modelling. We assess the quality of generated poems using crowd and expert judgements. The stress and rhyme models perform very well, as generated poems are largely indistinguishable from human-written poems. Expert evaluation, however, reveals that a vanilla language model captures meter implicitly, and that machine-generated poems still underperform in terms of readability and emotion. Our research shows the importance expert evaluation for poetry generation, and that future research should look beyond rhyme/meter and focus on poetic language.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lau-etal-2018-deep">
<titleInfo>
<title>Deep-speare: A joint neural model of poetic language, meter and rhyme</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jey</namePart>
<namePart type="given">Han</namePart>
<namePart type="family">Lau</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Timothy</namePart>
<namePart type="family">Baldwin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julian</namePart>
<namePart type="family">Brooke</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Adam</namePart>
<namePart type="family">Hammond</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yusuke</namePart>
<namePart type="family">Miyao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we propose a joint architecture that captures language, rhyme and meter for sonnet modelling. We assess the quality of generated poems using crowd and expert judgements. The stress and rhyme models perform very well, as generated poems are largely indistinguishable from human-written poems. Expert evaluation, however, reveals that a vanilla language model captures meter implicitly, and that machine-generated poems still underperform in terms of readability and emotion. Our research shows the importance expert evaluation for poetry generation, and that future research should look beyond rhyme/meter and focus on poetic language.</abstract>
<identifier type="citekey">lau-etal-2018-deep</identifier>
<identifier type="doi">10.18653/v1/P18-1181</identifier>
<location>
<url>https://aclanthology.org/P18-1181</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>1948</start>
<end>1958</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Deep-speare: A joint neural model of poetic language, meter and rhyme
%A Lau, Jey Han
%A Cohn, Trevor
%A Baldwin, Timothy
%A Brooke, Julian
%A Hammond, Adam
%Y Gurevych, Iryna
%Y Miyao, Yusuke
%S Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F lau-etal-2018-deep
%X In this paper, we propose a joint architecture that captures language, rhyme and meter for sonnet modelling. We assess the quality of generated poems using crowd and expert judgements. The stress and rhyme models perform very well, as generated poems are largely indistinguishable from human-written poems. Expert evaluation, however, reveals that a vanilla language model captures meter implicitly, and that machine-generated poems still underperform in terms of readability and emotion. Our research shows the importance expert evaluation for poetry generation, and that future research should look beyond rhyme/meter and focus on poetic language.
%R 10.18653/v1/P18-1181
%U https://aclanthology.org/P18-1181
%U https://doi.org/10.18653/v1/P18-1181
%P 1948-1958
Markdown (Informal)
[Deep-speare: A joint neural model of poetic language, meter and rhyme](https://aclanthology.org/P18-1181) (Lau et al., ACL 2018)
ACL
- Jey Han Lau, Trevor Cohn, Timothy Baldwin, Julian Brooke, and Adam Hammond. 2018. Deep-speare: A joint neural model of poetic language, meter and rhyme. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1948–1958, Melbourne, Australia. Association for Computational Linguistics.