
2424

Figure 2: Overview of AdvEntuRe, our model for knowledge-guided textual entailment.

Algorithm 1 Training procedure for AdvEntuRe.

1: pretrain discriminator D( O� ) on X;
2: pretrain generators Gs2s

c ( O�) on X;
3: for number of training iterations do
4: for mini-batch B  X do
5: generate examples from G
6: ZG(G(B;�),
7: balance X and ZG s.t. jZG j � ˛jX j
8: optimize discriminator:
9: O� = argmin� LD(X +ZG ; � )

10: optimize generator:
11: O� = argmin� LGs2s(ZG ;LD;�)

12: Update �  O� ;�  O�

achieve better discrimination on the augmented
data from the generator and better example gen-
eration against the learned discriminator. Algo-
rithm 1 shows our training procedure.

First, we pre-train the discriminator D and the
seq2seq generators Gs2s on the original data X .
We alternate the training of the discriminator and
generators over K iterations (set to 30 in our ex-
periments).

For each iteration, we take a mini-batch B from
our original data X . For each mini-batch, we
generate new entailment examples, ZG using our
adversarial examples generator. Once we collect
all the generated examples, we balance the ex-
amples based on their source and label (as de-
scribed in Section 3.5). In each training itera-
tion, we optimize the discriminator against the
augmented training data, X + ZG and use the
discriminator loss to guide the generator to pick
challenging examples. For every mini-batch of
examples X + ZG , we compute the discrimina-

tor loss L(C ;D(X + ZG ; � )) and apply the neg-
ative of this loss to each word of the generated
sentence in Gs2s. In other words, the discrimina-
tor loss value replaces the cross-entropy loss used
to train the seq2seq model (similar to a REIN-
FORCE (Williams, 1992) reward). This basic ap-
proach uses the loss over the entire batch to update
the generator, ignoring whether specific examples
were hard or easy for the discriminator. Instead,
one could update the generator per example based
on the discriminator’s loss on that example. We
leave this for future work.

5 Experiments

Our empirical assessment focuses on two key
questions: (a) Can a handful of rule templates im-
prove a state-of-the-art entailment system, espe-
cially with moderate amounts of training data? (b)
Can iterative GAN-style training lead to an im-
proved discriminator?

To this end, we assess various models on the
two entailment datasets mentioned earlier: SNLI
(570K examples) and SciTail (27K examples).5 To
test our hypothesis that adversarial example based
training prevents overfitting in small to moderate
training data regimes, we compare model accura-
cies on the test sets when using 1%, 10%, 50%,
and 100% subsamples of the train and dev sets.

We consider two baseline models: D, the De-
composable Attention model (Parikh et al., 2016)
with intra-sentence attention using pre-trained
word embeddings (Pennington et al., 2014); and
Dretro which extends D with word embeddings
initialized by retrofitted vectors (Faruqui et al.,
2015). The vectors are retrofitted on PPDB, Word-

5SNLI has a 96.4%/1.7%/1.7% split and SciTail has a
87.3%/4.8%/7.8% split on train, valid, and test sets, resp.
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Table 4: Test accuracies with different subsam-
pling ratios on SNLI (top) and SciTail (bottom).

SNLI 1% 10% 50% 100%
D 57.68 75.03 82.77 84.52
Dretro 57.04 73.45 81.18 84.14
AdvEntuRe
x D + Gs2s 58.35 75.66 82.91 84.68
x D + Grule 60.45 77.11 83.51 84.40
x D + Grule + Gs2s 59.33 76.03 83.02 83.25

SciTail 1% 10% 50% 100%
D 56.60 60.84 73.24 74.29
Dretro 59.75 67.99 69.05 72.63
AdvEntuRe
x D + Gs2s 65.78 70.77 74.68 76.92
x D + Grule 61.74 66.53 73.99 79.03
x D + Grule + Gs2s 63.28 66.78 74.77 78.60

Net, FrameNet, and all of these, with the best re-
sults for each dataset reported here.

Our proposed model, AdvEntuRe, is evaluated
in three flavors: D augmented with examples gen-
erated by Grule, Gs2s, or both, where Grule =

GKB[GH. In the first two cases, we create new ex-
amples for each batch in every epoch using a fixed
generator (cf. Section 3.5). In the third case (D +

Grule + Gs2s), we use the GAN-style training.
We uses grid search to find the best hyper-

parameters for D based on the validation set: hid-
den size 200 for LSTM layer, embedding size 300,
dropout ratio 0.2, and fine-tuned embeddings.

The ratio between the number of generated vs.
original examples, ˛ is empirically chosen to be
1.0 for SNLI and 0.5 for SciTail, based on vali-
dation set performance. Generally, very few gen-
erated examples (small ˛) has little impact, while
too many of them overwhelm the original dataset
resulting in worse scores (cf. Appendix for more
details).

5.1 Main Results

Table 4 summarizes the test set accuracies of the
different models using various subsampling ratios
for SNLI and SciTail training data.

We make a few observations. First, Dretro is in-
effective or even detrimental in most cases, except
on SciTail when 1% (235 examples) or 10% (2.3K
examples) of the training data is used. The gain in
these two cases is likely because retrofitted lexical
rules are helpful with extremely less data training
while not as data size increases.

On the other hand, our method always achieves

Table 5: Test accuracies across various rules R
and classes C. Since SciTail has two classes, we
only report results on two classes of Gs2s

R/C SNLI (5%) SciTail (10%)

D
+
G

ru
le

D 69.18 60.84
+ PPDB 72.81 (+3.6%) 65.52 (+4.6%)
+ SICK 71.32 (+2.1%) 67.49 (+6.5%)
+ WordNet 71.54 (+2.3%) 64.67 (+3.8%)
+ HAND 71.15 (+1.9%) 69.05 (+8.2%)
+ all 71.31 (+2.1%) 64.16 (+3.3%)

D
+
G

s2
s

D 69.18 60.84
+ positive 71.21 (+2.0%) 67.49 (+6.6%)
+ negative 71.76 (+2.6%) 68.95 (+8.1%)
+ neutral 71.72 (+2.5%) -
+ all 72.28 (+3.1%) 70.77 (+9.9%)

the best result compared to the baselines (D and
Dretro). Especially, significant improvements are
made in less data setting: +2.77% in SNLI (1%)
and 9.18% in SciTail (1%). Moreover, D + Grule’s
accuracy on SciTail (100%) also outperforms
the previous state-of-the-art model (DGEM (Khot
et al., 2018), which achieves 77.3%) for that
dataset by 1.7%.

Among the three different generators combined
with D, both Grule and Gs2s are useful in Sci-
Tail, while Grule is much more useful than Gs2s on
SNLI. We hypothesize that seq2seq model trained
on large training sets such as SNLI will be able
to reproduce the input sentences. Adversarial ex-
amples from such a model are not useful since
the entailment model uses the same training exam-
ples. However, on smaller sets, the seq2seq model
would introduce noise that can improve the robust-
ness of the model.

5.2 Ablation Study

To evaluate the impact of each generator, we per-
form ablation tests against each symbolic genera-
tor in D + Grule and the generator Gs2s

c for each
entailment class c. We use a 5% sample of SNLI
and a 10% sample of SciTail. The results are sum-
marized in Table 5.

Interestingly, while PPDB (phrasal para-
phrases) helps the most (+3.6%) on SNLI, simple
negation rules help significantly (+8.2%) on Sc-
iTail dataset. Since most entailment examples in
SNLI are minor rewrites by Turkers, PPDB often
contains these simple paraphrases. For SciTail, the
sentences are authored independently with lim-
ited gains from simple paraphrasing. However, a
model trained on only 10% of the dataset (2.3K
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Table 6: Given a premise P (underlined), examples of hypothesis sentences H’ generated by seq2seq
generators Gs2s, and premise sentences P’ generated by rule based generators Grule, on the full SNLI
data. Replaced words or phrases are shown in bold. This illustrates that even simple, easy-to-define
rules can generate useful adversarial examples.

P a person on a horse jumps over a broken down airplane

H’: Gs2s
c=v a person is on a horse jumps over a rail, a person jumping over a plane

H’: Gs2s
c=f a person is riding a horse in a field with a dog in a red coat

H’: Gs2s
c=# a person is in a blue dog is in a park

P (or H) a dirt bike rider catches some air going off a large hill

P’: GKB(PPDB)
�=�;g�=v a dirt motorcycle rider catches some air going off a large hill

P’: GKB(SICK)
�=c;g�=# a dirt bike man on yellow bike catches some air going off a large hill

P’: GKB(WordNet)
�=syno;g�=v a dirt bike rider catches some atmosphere going off a large hill

P’: GHand
�=neg;g�=f a dirt bike rider do not catch some air going off a large hill

examples) would end up learning a model relying
on purely word overlap. We believe that the sim-
ple negation examples introduce neutral examples
with high lexical overlap, forcing the model to find
a more informative signal.

On the other hand, using all classes for Gs2s re-
sults in the best performance, supporting the ef-
fectiveness of the GAN framework for penaliz-
ing or rewarding generated sentences based on
D’s loss. Preferential selection of rules within the
GAN framework remains a promising direction.

5.3 Qualitative Results

Table 6 shows examples generated by various
methods in AdvEntuRe. As shown, both seq2seq
and rule based generators produce reasonable sen-
tences according to classes and rules. As ex-
pected, seq2seq models trained on very few exam-
ples generate noisy sentences. The quality of our
knowledge-guided generators, on the other hand,
does not depend on the training set size and they
still produce reliable sentences.

5.4 Case Study: Negation

For further analysis of the negation-based gener-
ator in Table 1, we collect only the negation ex-
amples in test set of SNLI, henceforth referred to
as nega-SNLI. Specifically, we extract examples
where either the premise or the hypothesis con-
tains “not”, “no”, “never”, or a word that ends with
“n’t’. These do not cover more subtle ways of ex-
pressing negation such as “seldom” and the use of
antonyms. nega-SNLI contains 201 examples with
the following label distribution: 51 (25.4%) neu-

tral, 42 (20.9%) entails, 108 (53.7%) contradicts.
Table 7 shows examples in each category.

Table 7: Negation examples in nega-SNLI

v
P: several women are playing volleyball.
H: this doesn’t look like soccer.

#

P: a man with no shirt on is performing
with a baton.
H: a man is trying his best at the national
championship of baton.

f

P: island native fishermen reeling in their
nets after a long day’s work.
H: the men did not go to work today but
instead played bridge.

While D achieves an accuracy of only 76.64%6

on nega-SNLI, D + GH with negate is substan-
tially more successful (+6.1%) at handling nega-
tion, achieving an accuracy of 82.74%.

6 Conclusion

We introduced an adversarial training architec-
ture for textual entailment. Our seq2seq and
knowledge-guided example generators, trained in
an end-to-end fashion, can be used to make any
base entailment model more robust. The effec-
tiveness of this approach is demonstrated by the
significant improvement it achieves on both SNLI
and SciTail, especially in the low to medium data
regimes. Our rule-based generators can be ex-
panded to cover more patterns and phenomena,
and the seq2seq generator extended to incorporate
per-example loss for adversarial training.

6This is much less than the full test accuracy of 84.52%.
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