@inproceedings{an-etal-2018-semaxis,
title = "{S}em{A}xis: A Lightweight Framework to Characterize Domain-Specific Word Semantics Beyond Sentiment",
author = "An, Jisun and
Kwak, Haewoon and
Ahn, Yong-Yeol",
editor = "Gurevych, Iryna and
Miyao, Yusuke",
booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P18-1228",
doi = "10.18653/v1/P18-1228",
pages = "2450--2461",
abstract = "Because word semantics can substantially change across communities and contexts, capturing domain-specific word semantics is an important challenge. Here, we propose SemAxis, a simple yet powerful framework to characterize word semantics using many semantic axes in word-vector spaces beyond sentiment. We demonstrate that SemAxis can capture nuanced semantic representations in multiple online communities. We also show that, when the sentiment axis is examined, SemAxis outperforms the state-of-the-art approaches in building domain-specific sentiment lexicons.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="an-etal-2018-semaxis">
<titleInfo>
<title>SemAxis: A Lightweight Framework to Characterize Domain-Specific Word Semantics Beyond Sentiment</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jisun</namePart>
<namePart type="family">An</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Haewoon</namePart>
<namePart type="family">Kwak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yong-Yeol</namePart>
<namePart type="family">Ahn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yusuke</namePart>
<namePart type="family">Miyao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Because word semantics can substantially change across communities and contexts, capturing domain-specific word semantics is an important challenge. Here, we propose SemAxis, a simple yet powerful framework to characterize word semantics using many semantic axes in word-vector spaces beyond sentiment. We demonstrate that SemAxis can capture nuanced semantic representations in multiple online communities. We also show that, when the sentiment axis is examined, SemAxis outperforms the state-of-the-art approaches in building domain-specific sentiment lexicons.</abstract>
<identifier type="citekey">an-etal-2018-semaxis</identifier>
<identifier type="doi">10.18653/v1/P18-1228</identifier>
<location>
<url>https://aclanthology.org/P18-1228</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>2450</start>
<end>2461</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SemAxis: A Lightweight Framework to Characterize Domain-Specific Word Semantics Beyond Sentiment
%A An, Jisun
%A Kwak, Haewoon
%A Ahn, Yong-Yeol
%Y Gurevych, Iryna
%Y Miyao, Yusuke
%S Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F an-etal-2018-semaxis
%X Because word semantics can substantially change across communities and contexts, capturing domain-specific word semantics is an important challenge. Here, we propose SemAxis, a simple yet powerful framework to characterize word semantics using many semantic axes in word-vector spaces beyond sentiment. We demonstrate that SemAxis can capture nuanced semantic representations in multiple online communities. We also show that, when the sentiment axis is examined, SemAxis outperforms the state-of-the-art approaches in building domain-specific sentiment lexicons.
%R 10.18653/v1/P18-1228
%U https://aclanthology.org/P18-1228
%U https://doi.org/10.18653/v1/P18-1228
%P 2450-2461
Markdown (Informal)
[SemAxis: A Lightweight Framework to Characterize Domain-Specific Word Semantics Beyond Sentiment](https://aclanthology.org/P18-1228) (An et al., ACL 2018)
ACL