@inproceedings{barnes-etal-2018-bilingual,
title = "Bilingual Sentiment Embeddings: Joint Projection of Sentiment Across Languages",
author = "Barnes, Jeremy and
Klinger, Roman and
Schulte im Walde, Sabine",
editor = "Gurevych, Iryna and
Miyao, Yusuke",
booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P18-1231/",
doi = "10.18653/v1/P18-1231",
pages = "2483--2493",
abstract = "Sentiment analysis in low-resource languages suffers from a lack of annotated corpora to estimate high-performing models. Machine translation and bilingual word embeddings provide some relief through cross-lingual sentiment approaches. However, they either require large amounts of parallel data or do not sufficiently capture sentiment information. We introduce Bilingual Sentiment Embeddings (BLSE), which jointly represent sentiment information in a source and target language. This model only requires a small bilingual lexicon, a source-language corpus annotated for sentiment, and monolingual word embeddings for each language. We perform experiments on three language combinations (Spanish, Catalan, Basque) for sentence-level cross-lingual sentiment classification and find that our model significantly outperforms state-of-the-art methods on four out of six experimental setups, as well as capturing complementary information to machine translation. Our analysis of the resulting embedding space provides evidence that it represents sentiment information in the resource-poor target language without any annotated data in that language."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="barnes-etal-2018-bilingual">
<titleInfo>
<title>Bilingual Sentiment Embeddings: Joint Projection of Sentiment Across Languages</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jeremy</namePart>
<namePart type="family">Barnes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roman</namePart>
<namePart type="family">Klinger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sabine</namePart>
<namePart type="family">Schulte im Walde</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yusuke</namePart>
<namePart type="family">Miyao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Sentiment analysis in low-resource languages suffers from a lack of annotated corpora to estimate high-performing models. Machine translation and bilingual word embeddings provide some relief through cross-lingual sentiment approaches. However, they either require large amounts of parallel data or do not sufficiently capture sentiment information. We introduce Bilingual Sentiment Embeddings (BLSE), which jointly represent sentiment information in a source and target language. This model only requires a small bilingual lexicon, a source-language corpus annotated for sentiment, and monolingual word embeddings for each language. We perform experiments on three language combinations (Spanish, Catalan, Basque) for sentence-level cross-lingual sentiment classification and find that our model significantly outperforms state-of-the-art methods on four out of six experimental setups, as well as capturing complementary information to machine translation. Our analysis of the resulting embedding space provides evidence that it represents sentiment information in the resource-poor target language without any annotated data in that language.</abstract>
<identifier type="citekey">barnes-etal-2018-bilingual</identifier>
<identifier type="doi">10.18653/v1/P18-1231</identifier>
<location>
<url>https://aclanthology.org/P18-1231/</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>2483</start>
<end>2493</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Bilingual Sentiment Embeddings: Joint Projection of Sentiment Across Languages
%A Barnes, Jeremy
%A Klinger, Roman
%A Schulte im Walde, Sabine
%Y Gurevych, Iryna
%Y Miyao, Yusuke
%S Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F barnes-etal-2018-bilingual
%X Sentiment analysis in low-resource languages suffers from a lack of annotated corpora to estimate high-performing models. Machine translation and bilingual word embeddings provide some relief through cross-lingual sentiment approaches. However, they either require large amounts of parallel data or do not sufficiently capture sentiment information. We introduce Bilingual Sentiment Embeddings (BLSE), which jointly represent sentiment information in a source and target language. This model only requires a small bilingual lexicon, a source-language corpus annotated for sentiment, and monolingual word embeddings for each language. We perform experiments on three language combinations (Spanish, Catalan, Basque) for sentence-level cross-lingual sentiment classification and find that our model significantly outperforms state-of-the-art methods on four out of six experimental setups, as well as capturing complementary information to machine translation. Our analysis of the resulting embedding space provides evidence that it represents sentiment information in the resource-poor target language without any annotated data in that language.
%R 10.18653/v1/P18-1231
%U https://aclanthology.org/P18-1231/
%U https://doi.org/10.18653/v1/P18-1231
%P 2483-2493
Markdown (Informal)
[Bilingual Sentiment Embeddings: Joint Projection of Sentiment Across Languages](https://aclanthology.org/P18-1231/) (Barnes et al., ACL 2018)
ACL