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Abstract

We present a new dataset of image caption
annotations, Conceptual Captions, which
contains an order of magnitude more im-
ages than the MS-COCO dataset (Lin et al.,
2014) and represents a wider variety of
both images and image caption styles. We
achieve this by extracting and filtering im-
age caption annotations from billions of
webpages. We also present quantitative
evaluations of a number of image cap-
tioning models and show that a model
architecture based on Inception-ResNet-
v2 (Szegedy et al., 2016) for image-feature
extraction and Transformer (Vaswani et al.,
2017) for sequence modeling achieves the
best performance when trained on the Con-
ceptual Captions dataset.

1 Introduction

Automatic image description is the task of pro-
ducing a natural-language utterance (usually a sen-
tence) which correctly reflects the visual content
of an image. This task has seen an explosion in
proposed solutions based on deep learning architec-
tures (Bengio, 2009), starting with the winners of
the 2015 COCO challenge (Vinyals et al., 2015a;
Fang et al., 2015), and continuing with a variety of
improvements (see e.g. Bernardi et al. (2016) for a
review). Practical applications of automatic image
description systems include leveraging descriptions
for image indexing or retrieval, and helping those
with visual impairments by transforming visual sig-
nals into information that can be communicated via
text-to-speech technology. The scientific challenge
is seen as aligning, exploiting, and pushing further
the latest improvements at the intersection of Com-
puter Vision and Natural Language Processing.

Alt-text: A Pakistani worker helps
to clear the debris from the Taj Ma-
hal Hotel November 7, 2005 in Bal-
akot, Pakistan.

Conceptual Captions: a worker
helps to clear the debris.

Alt-text: Musician Justin Timber-
lake performs at the 2017 Pilgrim-
age Music & Cultural Festival on
September 23, 2017 in Franklin,
Tennessee.

Conceptual Captions: pop artist
performs at the festival in a city.

Figure 1: Examples of images and image descrip-
tions from the Conceptual Captions dataset; we
start from existing alt-text descriptions, and auto-
matically process them into Conceptual Captions
with a balance of cleanliness, informativeness, flu-
ency, and learnability.

There are two main categories of advances re-
sponsible for increased interest in this task. The
first is the availability of large amounts of anno-
tated data. Relevant datasets include the ImageNet
dataset (Deng et al., 2009), with over 14 million
images and 1 million bounding-box annotations,
and the MS-COCO dataset (Lin et al., 2014), with
120,000 images and 5-way image-caption anno-
tations. The second is the availability of power-
ful modeling mechanisms such as modern Con-
volutional Neural Networks (e.g. Krizhevsky et al.
(2012)), which are capable of converting image pix-
els into high-level features with no manual feature-
engineering.

In this paper, we make contributions to both
the data and modeling categories. First, we
present a new dataset of caption annotations∗,
Conceptual Captions (Fig. 1), which has an or-
der of magnitude more images than the COCO

∗https://github.com/google-research-datasets/conceptual-
captions
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dataset. Conceptual Captions consists of about
3.3M 〈image, description〉 pairs. In contrast with
the curated style of the COCO images, Concep-
tual Captions images and their raw descriptions
are harvested from the web, and therefore repre-
sent a wider variety of styles. The raw descriptions
are harvested from the Alt-text HTML attribute†

associated with web images. We developed an au-
tomatic pipeline (Fig. 2) that extracts, filters, and
transforms candidate image/caption pairs, with the
goal of achieving a balance of cleanliness, informa-
tiveness, fluency, and learnability of the resulting
captions.

As a contribution to the modeling category, we
evaluate several image-captioning models. Based
on the findings of Huang et al. (2016), we use
Inception-ResNet-v2 (Szegedy et al., 2016) for
image-feature extraction, which confers optimiza-
tion benefits via residual connections and com-
putationally efficient Inception units. For cap-
tion generation, we use both RNN-based (Hochre-
iter and Schmidhuber, 1997) and Transformer-
based (Vaswani et al., 2017) models. Our results
indicate that Transformer-based models achieve
higher output accuracy; combined with the reports
of Vaswani et al. (2017) regarding the reduced num-
ber of parameters and FLOPs required for training
& serving (compared with RNNs), models such as
T2T8x8 (Section 4) push forward the performance
on image-captioning and deserve further attention.

2 Related Work

Automatic image captioning has a long history (Ho-
dosh et al., 2013; Donahue et al., 2014; Karpa-
thy and Fei-Fei, 2015; Kiros et al., 2015). It
has accelerated with the success of Deep Neu-
ral Networks (Bengio, 2009) and the availability
of annotated data as offered by datasets such as
Flickr30K (Young et al., 2014) and MS-COCO (Lin
et al., 2014).

The COCO dataset is not large (order of 106 im-
ages), given the training needs of DNNs. In spite
of that, it has been very popular, in part because
it offers annotations for images with non-iconic
views, or non-canonical perspectives of objects,
and therefore reflects the composition of everyday
scenes (the same is true about Flickr30K (Young
et al., 2014)). COCO annotations–category label-
ing, instance spotting, and instance segmentation–
are done for all objects in an image, including those
†https://en.wikipedia.org/wiki/Alt attribute

in the background, in a cluttered environment, or
partially occluded. Its images are also annotated
with captions, i.e. sentences produced by human an-
notators to reflect the visual content of the images
in terms of objects and their actions or relations.

A large number of DNN models for image cap-
tion generation have been trained and evaluated
using COCO captions (Vinyals et al., 2015a; Fang
et al., 2015; Xu et al., 2015; Ranzato et al., 2015;
Yang et al., 2016; Liu et al., 2017; Ding and Soricut,
2017). These models are inspired by sequence-to-
sequence models (Sutskever et al., 2014; Bahdanau
et al., 2015) but use CNN-based encodings in-
stead of RNNs (Hochreiter and Schmidhuber, 1997;
Chung et al., 2014). Recently, the Transformer ar-
chitecture (Vaswani et al., 2017) has been shown
to be a viable alternative to RNNs (and CNNs) for
sequence modeling. In this work, we evaluate the
impact of the Conceptual Captions dataset on the
image captioning task using models that combine
CNN, RNN, and Transformer layers.

Also related to this work is the Pinterest image
and sentence-description dataset (Mao et al., 2016).
It is a large dataset (order of 108 examples), but its
text descriptions do not strictly reflect the visual
content of the associated image, and therefore can-
not be used directly for training image-captioning
models.

3 Conceptual Captions Dataset Creation

The Conceptual Captions dataset is programmat-
ically created using a Flume (Chambers et al.,
2010) pipeline. This pipeline processes billions
of Internet webpages in parallel. From these web-
pages, it extracts, filters, and processes candidate
〈image, caption〉 pairs. The filtering and process-
ing steps are described in detail in the following
sections.

Image-based Filtering The first filtering stage,
image-based filtering, discards images based on
encoding format, size, aspect ratio, and offensive
content. It only keeps JPEG images where both
dimensions are greater than 400 pixels, and the
ratio of larger to smaller dimension is no more than
2. It excludes images that trigger pornography or
profanity detectors. These filters discard more than
65% of the candidates.

Text-based Filtering The second filtering stage,
text-based filtering, harvests Alt-text from HTML
webpages. Alt-text generally accompanies images,
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[Alt-text not processed:
undesired image format, 

aspect ratio or size]

ALT-TEXT

“Ferrari dice”

“The meaning of life”

“Demi Lovato wearing a 
black Ester Abner Spring 
2018 gown and Stuart 
Weitzman sandals at the 
2017 American Music 
Awards”

IMAGE

[Alt-text discarded]

CAPTION

“pop rock artist 
wearing a black 
gown and sandals 
at awards”

[Alt-text discarded:
Text does not contain 

prep./article]

[Alt-text discarded:
No text vs. 

image-object 
overlap]

Image 
Filtering

Text 
Filtering

Img/Text 
Filtering

Text 
Transform

PIPELINE

IMAGEIMAGEIMAGE

Figure 2: Conceptual Captions pipeline steps with examples and final output.

and intends to describe the nature or the content of
the image. Because these Alt-text values are not in
any way restricted or enforced to be good image
descriptions, many of them have to be discarded,
e.g., search engine optimization (SEO) terms, or
Twitter hash-tag terms.

We analyze candidate Alt-text using the Google
Cloud Natural Language APIs, specifically part-
of-speech (POS), sentiment/polarity, and pornogra-
phy/profanity annotations. On top of these annota-
tions, we have the following heuristics:

• a well-formed caption should have a high
unique word ratio covering various POS tags;
candidates with no determiner, no noun, or no
preposition are discarded; candidates with a
high noun ratio are also discarded;

• candidates with a high rate of token repetition
are discarded;

• capitalization is a good indicator of well-
composed sentences; candidates where the
first word is not capitalized, or with too high
capitalized-word ratio are discarded;

• highly unlikely tokens are a good indicator of
not desirable text; we use a vocabulary VW of
1B token types, appearing at least 5 times in

the English Wikipedia, and discard candidates
that contain tokens that are not found in this
vocabulary.

• candidates that score too high or too low on
the polarity annotations, or trigger the pornog-
raphy/profanity detectors, are discarded;

• predefined boiler-plate prefix/suffix sequences
matching the text are cropped, e.g. “click to
enlarge picture”, “stock photo”; we also drop
text which begins/ends in certain patterns, e.g.
“embedded image permalink”, “profile photo”.

These filters only allow around 3% of the incoming
candidates to pass to the later stages.

Image&Text-based Filtering In addition to the
separate filtering based on image and text content,
we filter out candidates for which none of the text
tokens can be mapped to the content of the image.
To this end, we use classifiers available via the
Google Cloud Vision APIs to assign class labels to
images, using an image classifier with a large num-
ber of labels (order of magnitude of 105). Notably,
these labels are also 100% covered by the Vw token
types.

Images are generally assigned between 5 to 20
labels, though the exact number depends on the
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Original Alt-text Harrison Ford and Calista Flockhart attend the premiere of ‘Hollywood Homicide’ at the
29th American Film Festival September 5, 2003 in Deauville, France.

Conceptual Captions actors attend the premiere at festival.
what-happened “Harrison Ford and Calista Flockhart” mapped to “actors”; name, location, and date dropped.

Original Alt-text Side view of a British Airways Airbus A319 aircraft on approach to land with landing gear
down - Stock Image

Conceptual Captions side view of an aircraft on approach to land with landing gear down
what-happened phrase “British Airways Airbus A319 aircraft” mapped to “aircraft”; boilerplate removed.

Original Alt-text Two sculptures by artist Duncan McKellar adorn trees outside the derelict Norwich Union
offices in Bristol, UK - Stock Image

Conceptual Captions sculptures by person adorn trees outside the derelict offices
what-happened object count (e.g. “Two”) dropped; proper noun-phrase hypernymized to “person”; proper-

noun modifiers dropped; location dropped; boilerplate removed.

Table 1: Examples of Conceptual Captions as derived from their original Alt-text versions.

image. We match these labels against the candi-
date text, taking into account morphology-based
stemming as provided by the text annotation. Can-
didate 〈image, caption〉 pairs with no overlap are
discarded. This filter discards around 60% of the
incoming candidates.

Text Transformation with Hypernymization
In the current version of the dataset, we consid-
ered over 5 billion images from about 1 billion
English webpages. The filtering criteria above are
designed to be high-precision (which comes with
potentially low recall). From the original input can-
didates, only 0.2% 〈image, caption〉 pairs pass the
filtering criteria described above.

While the remaining candidate captions tend
to be appropriate Alt-text image descriptions (see
Alt-text in Fig. 1), a majority of these candidate
captions contain proper names (people, venues,
locations, etc.), which would be extremely diffi-
cult to learn as part of the image captioning task.
To give an idea of what would happen in such
cases, we train an RNN-based captioning model
(see Section 4) on non-hypernymized Alt-text data
and present an output example in Fig. 3. If auto-
matic determination of person identity, location,
etc. is needed, it should be attempted as a sepa-
rate task and would need to leverage image meta-
information about the image (e.g. location).

Using the Google Cloud Natural Language APIs,
we obtain named-entity and syntactic-dependency
annotations. We then use the Google Knowl-
edge Graph (KG) Search API to match the named-
entities to KG entries and exploit the associated hy-
pernym terms. For instance, both “Harrison Ford”
and “Calista Flockhart” identify as named-entities,

Alt-text (groundtruth):
Jimmy Barnes performs at the
Sydney Entertainment Centre

Model output: Singer Justin
Bieber performs onstage during
the Billboard Music Awards at
the MGM

Figure 3: Example of model output trained on
clean, non-hypernymized Alt-text data.

so we match them to their corresponding KG en-
tries. These KG entries have “actor” as their hyper-
nym, so we replace the original surface tokens with
that hypernym.

The following steps are applied to achieve text
transformations:

• noun modifiers of certain types (proper nouns,
numbers, units) are removed;

• dates, durations, and preposition-based loca-
tions (e.g., “in Los Angeles”) are removed;

• named-entities are identified, matched against
the KG entries, and substitute with their hy-
pernym;

• resulting coordination noun-phrases with the
same head (e.g., “actor and actor”) are re-
solved into a single-head, pluralized form
(e.g., “actors”);

Around 20% of samples are discarded during this
transformation because it can leave sentences too
short or inconsistent.

Finally, we perform another round of text analy-
sis and entity resolution to identify concepts with
low-count. We cluster all resolved entities (e.g.,
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“actor”, “dog”, “neighborhood”, etc.) and keep
only the candidates for which all detected types
have a count of over 100 (around 55% of the can-
didates). These remaining 〈image, caption〉 pairs
contain around 16,000 entity types, guaranteed to
be well represented in terms of number of examples.
Table 1 contains several examples of before/after-
transformation pairs.

Conceptual Captions Quality To evaluate the
precision of our pipeline, we consider a random
sample of 4K examples extracted from the test split
of the Conceptual Captions dataset. We perform a
human evaluation on this sample, using the same
methodology described in Section 5.4.

GOOD (out of 3)
1+ 2+ 3

Conceptual Captions 96.9% 90.3% 78.5%

Table 2: Human evaluation results on a sample
from Conceptual Captions.

The results are presented in Table 2 and show
that, out of 3 annotations, over 90% of the captions
receive a majority (2+) of GOOD judgments. This
indicates that the Conceptual Captions pipeline,
though involving extensive algorithmic processing,
produces high-quality image captions.

Examples Unique Tokens/Caption
Tokens Mean StdDev Median

Train 3,318,333 51,201 10.3 4.5 9.0
Valid. 28,355 13,063 10.3 4.6 9.0

Test 22,530 11,731 10.1 4.5 9.0

Table 3: Statistics over Train/Validation/Test splits
for Conceptual Captions.

We present in Table 3 statistics over the
Train/Validation/Test splits for the Conceptual Cap-
tions dataset. The training set consists of slightly
over 3.3M examples, while there are slightly over
28K examples in the validation set and 22.5K ex-
amples in the test set. The size of the training set
vocabulary (unique tokens) is 51,201. Note that the
test set has been cleaned using human judgements
(2+ GOOD), while both the training and valida-
tion splits contain all the data, as produced by our
automatic pipeline. The mean/stddev/median statis-
tics for tokens-per-caption over the data splits are
consistent with each other, at around 10.3/4.5/9.0,
respectively.

4 Image Captioning Models

In order to assess the impact of the Conceptual Cap-
tions dataset, we consider several image captioning
models previously proposed in the literature. These
models can be understood using the illustration in
Fig. 4, as they mainly differ in the way in which
they instantiate some of these components.

Encoder

<GO> people playing frisbee

Decoder

people playing frisbee in

Image Embedding

X

H

Y

Z

Figure 4: The main model components.

There are three main components to this archi-
tecture:

• A deep CNN that takes a (preprocessed) im-
age and outputs a vector of image embeddings
X = (x1,x2, ...,xL).

• An Encoder module that takes the image
embeddings and encodes them into a tensor
H = fenc(X).

• A Decoder model that generates outputs zt =
fdec(Y1:t,H) at each step t, conditioned on
H as well as the decoder inputs Y1:t.

We explore two main instantiations of this architec-
ture. One uses RNNs with LSTM cells (Hochreiter
and Schmidhuber, 1997) to implement the fenc and
fdec functions, corresponding to the Show-And-
Tell (Vinyals et al., 2015b) model. The other uses
Transformer self-attention networks (Vaswani et al.,
2017) to implement fenc and fdec. All models in
this paper use Inception-ResNet-v2 as the CNN
component (Szegedy et al., 2016).

4.1 RNN-based Models
Our instantiation of the RNN-based model is
close to the Show-And-Tell (Vinyals et al., 2015b)
model.

hl , RNNenc(xl,hl−1), and H = hL,

zt , RNNdec(yt, zt−1), where z0 = H .
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In the original Show-And-Tell model, a single im-
age embedding of the entire image is fed to the first
cell of an RNN, which is also used for text gener-
ation. In our model, a single image embedding is
fed to an RNNenc with only one cell, and then a dif-
ferent RNNdec is used for text generation. We tried
both single image (1x1) embeddings and 8x8 parti-
tions of the image, where each partition has its own
embedding. In the 8x8 case, image embeddings are
fed in a sequence to the RNNenc. In both cases, we
apply plain RNNs without cross attention, same as
the Show-And-Tell model. RNNs with cross atten-
tion were used in the Show-Attend-Tell model (Xu
et al., 2015), but we find its performance to be
inferior to the Show-And-Tell model.

4.2 Transformer Model
In the Transformer-based models, both the encoder
and the decoder contain a stack of N layers. We
denote the n-th layer in the encoder by Xn =
{xn,1, . . . ,xn,L}, and X0 = X, H = XN . Each
of these layers contains two sub-layers: a multi-
head self-attention layer ATTN, and a position-wise
feedforward network FFN:

x′n,j =ATTN(xn,j ,Xn;W
e
q ,W

e
k,W

e
v)

,softmax(〈xn,j W
e
q ,Xn We

k〉)Xn We
v

x(n+1),j =FFN(x′n,j ;W
e
f )

where We
q, We

k, and We
v are the encoder weight

matrices for query, key, and value transformation
in the self-attention sub-layer; and We

f denotes the
encoder weight matrix of the feedforward sub-layer.
Similar to the RNN-based model, we consider us-
ing a single image embedding (1x1) and a vector
of 8x8 image embeddings.

In the decoder, we denote the n-th layer by
Zn = {zn,1, . . . , zn,T } and Z0 = Y. There are
two main differences between the decoder and en-
coder layers. First, the self-attention sub-layer in
the decoder is masked to the right, in order to pre-
vent attending to “future” positions (i.e. zn,j does
not attend to zn,(j+1), . . . , zn,T ). Second, in be-
tween the self-attention layer and the feedforward
layer, the decoder adds a third cross-attention layer
that connects zn,j to the top-layer encoder repre-
sentation H = XN .

z′n,j =ATTN(zn,j ,Zn,1:j ;W
d
q ,W

d
k,W

d
v)

z′′n,j =ATTN(z′n,j ,H;Wc
q ,W

c
k,W

c
v)

z(n+1),j =FFN(z′′n,j ;W
d
f )

where Wd
q , Wd

k, and Wd
v are the weight matrices

for query, key, and value transformation in the de-
coder self-attention sub-layer; Wc

q, Wc
k, Wc

v are
the corresponding decoder weight matrices in the
cross-attention sub-layer; and Wd

f is the decoder
weight matrix of the feedforward sub-layer.

The Transformer-based models utilize position
information at the embedding layer. In the 8x8 case,
the 64 embedding vectors are serialized to a 1D
sequence with positions from [0, . . . , 63]. The po-
sition information is modeled by applying sine and
cosine functions at each position and with differ-
ent frequencies for each embedding dimension, as
in (Vaswani et al., 2017), and subsequently added
to the embedding representations.

5 Experimental Results

In this section, we evaluate the impact of using
the Conceptual Captions dataset (referred to as
’Conceptual’ in what follows) for training image
captioning models. To this end, we train the
models described in Section 4 under two exper-
imental conditions: using the training & devel-
opment sets provided by the COCO dataset (Lin
et al., 2014), versus training & development sets
using the Conceptual dataset. We quantitatively
evaluate the resulting models using three differ-
ent test sets: the blind COCO-C40 test set (in-
domain for COCO-trained models, out-of-domain
for Conceptual-trained models); the Conceptual
test set (out-of-domain for COCO-trained mod-
els, in-domain for Conceptual-trained models); and
the Flickr (Young et al., 2014) 1K test set (out-
of-domain for both COCO-trained models and
Conceptual-trained models).

5.1 Dataset Details

COCO Image Captions The COCO image cap-
tioning dataset is normally divided into 82K images
for training, and 40K images for validation. Each
of these images comes with at least 5 groundtruth
captions. Following standard practice, we combine
the training set with most of the validation dataset
for training our model, and only hold out a subset
of 4K images for validation.

Conceptual Captions The Conceptual Captions
dataset contains around 3.3M images for training,
28K for validation and 22.5K for the test set. For
more detailed statistics, see Table 3.
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COCO-trained

RNN8x8 a group of men standing
in front of a building

a couple of people walk-
ing down a walkway

a child sitting at a table
with a cake on it

a close up of a stuffed
animal on a table

T2T8x8 a group of men in uni-
form and ties are talking

a narrow hallway with a
clock and two doors

a woman cutting a birth-
day cake at a party

a picture of a fish on the
side of a car

Conceptual-trained

RNN8x8
graduates line up for
the commencement cer-
emony

a view of the nave a child ’s drawing at a
birthday party

a cartoon business-
man thinking about
something

T2T8x8 graduates line up to re-
ceive their diplomas

the cloister of the cathe-
dral

learning about the arts
and crafts

a cartoon businessman
asking for help

Figure 5: Side by side comparison of model outputs under two training conditions. Conceptual-based
models (lower half) tend to hallucinate less, are more expressive, and handle well a larger variety of
images. The two images in the middle are from Flickr; the other two are from Conceptual Captions.

5.2 Experimental Setup

Image Preprocessing Each input image is first
preprocessed by random distortion and cropping
(using a random ratio from 50%∼100%). This
prevents models from overfitting individual pixels
of the training images.

Encoder-Decoder For RNN-based models, we
use a 1-layer, 512-dim LSTM as the RNN cell. For
the Transformer-based models, we use the default
setup from (Vaswani et al., 2017), with N = 6
encoder and decoder layers, a hidden-layer size of
512, and 8 attention heads.

Text Handling Training captions are truncated
to maximum 15 tokens. We use a token type min-
count of 4, which results in around 9,000 token
types for the COCO dataset, and around 25,000
token types for the Conceptual Captions dataset.
All other tokens are replaced with special token
〈UNK〉. The word embedding matrix has size 512
and is tied to the output projection matrix.

Optimization All models are trained using MLE
loss and optimized using Adagrad (Duchi et al.,
2011) with learning rate 0.01. Mini-batch size is 25.
All model parameters are trained for a total number
of 5M steps, with batch updates asynchronously
distributed across 40 workers. The final model
is selected based on the best CIDEr score on the
development set for the given training condition.

Inference During inference, the decoder predic-
tion of the previous position is fed to the input of
the next position. We use a beam search of beam

size 4 to compute the most likely output sequence.

5.3 Qualitative Results

Before we present the numerical results for our
experiments, we discuss briefly the patterns that
we have observed.

One difference between COCO-trained models
and Conceptual-trained models is their ability to
use the appropriate natural language terms for the
entities in an image. For the left-most image in
Fig. 5, COCO-trained models use “group of men”
to refer to the people in the image; Conceptual-
based models use the more appropriate and infor-
mative term “graduates”. The second image, from
the Flickr test set, makes this even more clear. The
Conceptual-trained T2T8x8 model is perfectly ren-
dering the image content as “the cloister of the
cathedral”. None of the other models come close
to producing such an accurate description.

A second difference is that COCO-trained mod-
els often seem to hallucinate objects. For instance,
they hallucinate “front of building” for the first im-
age, “clock and two doors” for the second, and
“birthday cake” for the third image. In contrast,
Conceptual-trained models do not seem to have
this problem. We hypothesize that the hallucina-
tion issue for COCO-based models comes from
the high correlations present in the COCO data
(e.g., if there is a kid at a table, there is also cake).
This high degree of correlation in the data does not
allow the captioning model to correctly disentan-
gle and learn representations at the right level of
granularity.
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Model Training 1+ 2+ 3+
RNN8x8 COCO 0.390 0.276 0.173
T2T8x8 COCO 0.478 0.362 0.275
RNN8x8 Conceptual 0.571 0.418 0.277
T2T8x8 Conceptual 0.659 0.506 0.355

Table 4: Human eval results on Flickr 1K Test.

A third difference is the resilience to a large
spectrum of image types. COCO only contains nat-
ural images, and therefore a cartoon image like the
fourth one results in massive hallucination effects
for COCO-trained models (“stuffed animal”, “fish”,
“side of car”). In contrast, Conceptual-trained mod-
els handle such images with ease.

5.4 Quantitative Results
In this section, we present quantitative results on
the quality of the outputs produced by several im-
age captioning models. We present both automatic
evaluation results and human evaluation results.

5.4.1 Human Evaluation Results
For human evaluations, we use a pool of profes-
sional raters (tens of raters), with a double-blind
evaluation condition. Raters are asked to assign a
GOOD or BAD label to a given 〈image, caption〉
input, using just common-sense judgment. This
approximates the reaction of a typical user, who
normally would not accept predefined notions of
GOOD vs. BAD. We ask 3 separate raters to rate
each input pair and report the percentage of pairs
that receive k or more (k+) GOOD annotations.

In Table 4, we report the results on the Flickr
1K test set. This evaluation is out-of-domain for
both training conditions, so all models are on rel-
atively equal footing. The results indicate that the
Conceptual-based models are superior. In 50.6%
(for the T2T8x8 model) of cases, a majority of an-
notators (2+) assigned a GOOD label. The results
also indicate that the Transformer-based models are
superior to the RNN-based models by a good mar-
gin, by over 8-points (for 2+) under both COCO
and Conceptual training conditions.

Model Training CIDEr ROUGE-L METEOR
RNN1x1 COCO 1.021 0.694 0.348
RNN8x8 COCO 1.044 0.698 0.354
T2T1x1 COCO 1.032 0.700 0.358
T2T8x8 COCO 1.032 0.700 0.356
RNN1x1 Conceptual 0.403 0.445 0.191
RNN8x8 Conceptual 0.410 0.437 0.189
T2T1x1 Conceptual 0.348 0.403 0.171
T2T8x8 Conceptual 0.345 0.400 0.170

Table 5: Auto metrics on the COCO C40 Test.

Model Training CIDEr ROUGE-L SPICE
RNN1x1 COCO 0.183 0.149 0.062
RNN8x8 COCO 0.191 0.152 0.065
T2T1x1 COCO 0.184 0.148 0.062
T2T8x8 COCO 0.190 0.151 0.064
RNN1x1 Conceptual 1.351 0.326 0.235
RNN8x8 Conceptual 1.401 0.330 0.240
T2T1x1 Conceptual 1.588 0.331 0.254
T2T8x8 Conceptual 1.676 0.336 0.257

Table 6: Auto metrics on the 22.5K Conceptual
Captions Test set.

Model Training CIDEr ROUGE-L SPICE
RNN1x1 COCO 0.340 0.414 0.101
RNN8x8 COCO 0.356 0.413 0.103
T2T1x1 COCO 0.341 0.404 0.101
T2T8x8 COCO 0.359 0.416 0.103
RNN1x1 Conceptual 0.269 0.310 0.076
RNN8x8 Conceptual 0.275 0.309 0.076
T2T1x1 Conceptual 0.226 0.280 0.068
T2T8x8 Conceptual 0.227 0.277 0.066

Table 7: Auto metrics on the Flickr 1K Test.

5.4.2 Automatic Evaluation Results
In this section, we report automatic evaluation re-
sults, using established image captioning metrics.

For the COCO C40 test set (Fig. 5), we report
the numerical values returned by the COCO on-
line evaluation server‡, using the CIDEr (Vedantam
et al., 2015), ROUGE-L (Lin and Och, 2004), and
METEOR (Banerjee and Lavie, 2005) metrics. For
Conceptual Captions (Fig. 6) and Flickr (Fig. 7)
test sets, we report numerical values for the CIDEr,
ROUGE-L, and SPICE (Anderson et al., 2016)§.
For all metrics, higher number means closer dis-
tance between the candidates and the groundtruth
captions.

The automatic metrics are good at detecting in-
vs out-of-domain situations. For COCO-models
tested on COCO, the results in Fig. 5 show CIDEr
scores in the 1.02-1.04 range, for both RNN- and
Transformer-based models; the scores drop in the
0.35-0.41 range (CIDEr) for the Conceptual-based
models tested against COCO groundtruth. For
Conceptual-models tested on the Conceptual Cap-
tions test set, the results in Fig. 6 show scores
as high as 1.468 CIDEr for the T2T8x8 model,
which corroborates the human-eval results for the
Transformer-based models being superior to the
RNN-based models; the scores for the COCO-
based models tested against Conceptual Captions
groundtruth are all below 0.2 CIDEr.

The automatic metrics fail to corroborate the
‡http://mscoco.org/dataset/#captions-eval.
§https://github.com/tylin/coco-caption.
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human evaluation results. According to the auto-
matic metrics, the COCO-trained models are su-
perior to the Conceptual-trained models (CIDEr
scores in the mid-0.3 for the COCO-trained con-
dition, versus mid-0.2 for the Conceptual-trained
condition), and the RNN-based models are supe-
rior to Transformer-based models. Notably, these
are the same metrics which score humans lower
than the methods that won the COCO 2015 chal-
lenge (Vinyals et al., 2015a; Fang et al., 2015),
despite the fact that humans are still much better
at this task. The failure of these metrics to align
with the human evaluation results casts again grave
doubts on their ability to drive progress in this field.
A significant weakness of these metrics is that hal-
lucination effects are under-penalized (a small pre-
cision penalty for tokens with no correspondent
in the reference), compared to human judgments
that tend to dive dramatically in the presence of
hallucinations.

6 Conclusions

We present a new image captioning dataset, Con-
ceptual Captions, which has several key character-
istics: it has around 3.3M examples, an order of
magnitude larger than the COCO image-captioning
dataset; it consists of a wide variety of images,
including natural images, product images, profes-
sional photos, cartoons, drawings, etc.; and, its
captions are based on descriptions taken from orig-
inal Alt-text attributes, automatically transformed
to achieve a balance between cleanliness, informa-
tiveness, and learnability.

We evaluate both the quality of the resulting
image/caption pairs, as well as the performance of
several image-captioning models when trained on
the Conceptual Captions data. The results indicate
that such models achieve better performance, and
avoid some of the pitfalls seen with COCO-trained
models, such as object hallucination. We hope that
the availability of the Conceptual Captions dataset
will foster considerable progress on the automatic
image-captioning task.
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