@inproceedings{goyal-etal-2018-think,
title = "Think Visually: Question Answering through Virtual Imagery",
author = "Goyal, Ankit and
Wang, Jian and
Deng, Jia",
editor = "Gurevych, Iryna and
Miyao, Yusuke",
booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P18-1242/",
doi = "10.18653/v1/P18-1242",
pages = "2598--2608",
abstract = "In this paper, we study the problem of geometric reasoning (a form of visual reasoning) in the context of question-answering. We introduce Dynamic Spatial Memory Network (DSMN), a new deep network architecture that specializes in answering questions that admit latent visual representations, and learns to generate and reason over such representations. Further, we propose two synthetic benchmarks, FloorPlanQA and ShapeIntersection, to evaluate the geometric reasoning capability of QA systems. Experimental results validate the effectiveness of our proposed DSMN for visual thinking tasks."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="goyal-etal-2018-think">
<titleInfo>
<title>Think Visually: Question Answering through Virtual Imagery</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ankit</namePart>
<namePart type="family">Goyal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jian</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jia</namePart>
<namePart type="family">Deng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yusuke</namePart>
<namePart type="family">Miyao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we study the problem of geometric reasoning (a form of visual reasoning) in the context of question-answering. We introduce Dynamic Spatial Memory Network (DSMN), a new deep network architecture that specializes in answering questions that admit latent visual representations, and learns to generate and reason over such representations. Further, we propose two synthetic benchmarks, FloorPlanQA and ShapeIntersection, to evaluate the geometric reasoning capability of QA systems. Experimental results validate the effectiveness of our proposed DSMN for visual thinking tasks.</abstract>
<identifier type="citekey">goyal-etal-2018-think</identifier>
<identifier type="doi">10.18653/v1/P18-1242</identifier>
<location>
<url>https://aclanthology.org/P18-1242/</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>2598</start>
<end>2608</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Think Visually: Question Answering through Virtual Imagery
%A Goyal, Ankit
%A Wang, Jian
%A Deng, Jia
%Y Gurevych, Iryna
%Y Miyao, Yusuke
%S Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F goyal-etal-2018-think
%X In this paper, we study the problem of geometric reasoning (a form of visual reasoning) in the context of question-answering. We introduce Dynamic Spatial Memory Network (DSMN), a new deep network architecture that specializes in answering questions that admit latent visual representations, and learns to generate and reason over such representations. Further, we propose two synthetic benchmarks, FloorPlanQA and ShapeIntersection, to evaluate the geometric reasoning capability of QA systems. Experimental results validate the effectiveness of our proposed DSMN for visual thinking tasks.
%R 10.18653/v1/P18-1242
%U https://aclanthology.org/P18-1242/
%U https://doi.org/10.18653/v1/P18-1242
%P 2598-2608
Markdown (Informal)
[Think Visually: Question Answering through Virtual Imagery](https://aclanthology.org/P18-1242/) (Goyal et al., ACL 2018)
ACL
- Ankit Goyal, Jian Wang, and Jia Deng. 2018. Think Visually: Question Answering through Virtual Imagery. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 2598–2608, Melbourne, Australia. Association for Computational Linguistics.