@inproceedings{cianflone-etal-2018-lets,
title = "Let{'}s do it {``}again{''}: A First Computational Approach to Detecting Adverbial Presupposition Triggers",
author = "Cianflone, Andre and
Feng, Yulan and
Kabbara, Jad and
Cheung, Jackie Chi Kit",
editor = "Gurevych, Iryna and
Miyao, Yusuke",
booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P18-1256",
doi = "10.18653/v1/P18-1256",
pages = "2747--2755",
abstract = "We introduce the novel task of predicting adverbial presupposition triggers, which is useful for natural language generation tasks such as summarization and dialogue systems. We introduce two new corpora, derived from the Penn Treebank and the Annotated English Gigaword dataset and investigate the use of a novel attention mechanism tailored to this task. Our attention mechanism augments a baseline recurrent neural network without the need for additional trainable parameters, minimizing the added computational cost of our mechanism. We demonstrate that this model statistically outperforms our baselines.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="cianflone-etal-2018-lets">
<titleInfo>
<title>Let’s do it “again”: A First Computational Approach to Detecting Adverbial Presupposition Triggers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Cianflone</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">Feng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jad</namePart>
<namePart type="family">Kabbara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jackie</namePart>
<namePart type="given">Chi</namePart>
<namePart type="given">Kit</namePart>
<namePart type="family">Cheung</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yusuke</namePart>
<namePart type="family">Miyao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We introduce the novel task of predicting adverbial presupposition triggers, which is useful for natural language generation tasks such as summarization and dialogue systems. We introduce two new corpora, derived from the Penn Treebank and the Annotated English Gigaword dataset and investigate the use of a novel attention mechanism tailored to this task. Our attention mechanism augments a baseline recurrent neural network without the need for additional trainable parameters, minimizing the added computational cost of our mechanism. We demonstrate that this model statistically outperforms our baselines.</abstract>
<identifier type="citekey">cianflone-etal-2018-lets</identifier>
<identifier type="doi">10.18653/v1/P18-1256</identifier>
<location>
<url>https://aclanthology.org/P18-1256</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>2747</start>
<end>2755</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Let’s do it “again”: A First Computational Approach to Detecting Adverbial Presupposition Triggers
%A Cianflone, Andre
%A Feng, Yulan
%A Kabbara, Jad
%A Cheung, Jackie Chi Kit
%Y Gurevych, Iryna
%Y Miyao, Yusuke
%S Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F cianflone-etal-2018-lets
%X We introduce the novel task of predicting adverbial presupposition triggers, which is useful for natural language generation tasks such as summarization and dialogue systems. We introduce two new corpora, derived from the Penn Treebank and the Annotated English Gigaword dataset and investigate the use of a novel attention mechanism tailored to this task. Our attention mechanism augments a baseline recurrent neural network without the need for additional trainable parameters, minimizing the added computational cost of our mechanism. We demonstrate that this model statistically outperforms our baselines.
%R 10.18653/v1/P18-1256
%U https://aclanthology.org/P18-1256
%U https://doi.org/10.18653/v1/P18-1256
%P 2747-2755
Markdown (Informal)
[Let’s do it “again”: A First Computational Approach to Detecting Adverbial Presupposition Triggers](https://aclanthology.org/P18-1256) (Cianflone et al., ACL 2018)
ACL