@inproceedings{zukov-gregoric-etal-2018-named,
title = "Named Entity Recognition With Parallel Recurrent Neural Networks",
author = "{\v{Z}}ukov-Gregori{\v{c}}, Andrej and
Bachrach, Yoram and
Coope, Sam",
editor = "Gurevych, Iryna and
Miyao, Yusuke",
booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P18-2012",
doi = "10.18653/v1/P18-2012",
pages = "69--74",
abstract = "We present a new architecture for named entity recognition. Our model employs multiple independent bidirectional LSTM units across the same input and promotes diversity among them by employing an inter-model regularization term. By distributing computation across multiple smaller LSTMs we find a significant reduction in the total number of parameters. We find our architecture achieves state-of-the-art performance on the CoNLL 2003 NER dataset.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zukov-gregoric-etal-2018-named">
<titleInfo>
<title>Named Entity Recognition With Parallel Recurrent Neural Networks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Andrej</namePart>
<namePart type="family">Žukov-Gregorič</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yoram</namePart>
<namePart type="family">Bachrach</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sam</namePart>
<namePart type="family">Coope</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yusuke</namePart>
<namePart type="family">Miyao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a new architecture for named entity recognition. Our model employs multiple independent bidirectional LSTM units across the same input and promotes diversity among them by employing an inter-model regularization term. By distributing computation across multiple smaller LSTMs we find a significant reduction in the total number of parameters. We find our architecture achieves state-of-the-art performance on the CoNLL 2003 NER dataset.</abstract>
<identifier type="citekey">zukov-gregoric-etal-2018-named</identifier>
<identifier type="doi">10.18653/v1/P18-2012</identifier>
<location>
<url>https://aclanthology.org/P18-2012</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>69</start>
<end>74</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Named Entity Recognition With Parallel Recurrent Neural Networks
%A Žukov-Gregorič, Andrej
%A Bachrach, Yoram
%A Coope, Sam
%Y Gurevych, Iryna
%Y Miyao, Yusuke
%S Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F zukov-gregoric-etal-2018-named
%X We present a new architecture for named entity recognition. Our model employs multiple independent bidirectional LSTM units across the same input and promotes diversity among them by employing an inter-model regularization term. By distributing computation across multiple smaller LSTMs we find a significant reduction in the total number of parameters. We find our architecture achieves state-of-the-art performance on the CoNLL 2003 NER dataset.
%R 10.18653/v1/P18-2012
%U https://aclanthology.org/P18-2012
%U https://doi.org/10.18653/v1/P18-2012
%P 69-74
Markdown (Informal)
[Named Entity Recognition With Parallel Recurrent Neural Networks](https://aclanthology.org/P18-2012) (Žukov-Gregorič et al., ACL 2018)
ACL
- Andrej Žukov-Gregorič, Yoram Bachrach, and Sam Coope. 2018. Named Entity Recognition With Parallel Recurrent Neural Networks. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 69–74, Melbourne, Australia. Association for Computational Linguistics.