@inproceedings{xu-etal-2018-automatic,
    title = "Automatic Extraction of Commonsense {L}ocated{N}ear Knowledge",
    author = "Xu, Frank F.  and
      Lin, Bill Yuchen  and
      Zhu, Kenny",
    editor = "Gurevych, Iryna  and
      Miyao, Yusuke",
    booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
    month = jul,
    year = "2018",
    address = "Melbourne, Australia",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/P18-2016/",
    doi = "10.18653/v1/P18-2016",
    pages = "96--101",
    abstract = "LocatedNear relation is a kind of commonsense knowledge describing two physical objects that are typically found near each other in real life. In this paper, we study how to automatically extract such relationship through a sentence-level relation classifier and aggregating the scores of entity pairs from a large corpus. Also, we release two benchmark datasets for evaluation and future research."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="xu-etal-2018-automatic">
    <titleInfo>
        <title>Automatic Extraction of Commonsense LocatedNear Knowledge</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Frank</namePart>
        <namePart type="given">F</namePart>
        <namePart type="family">Xu</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Bill</namePart>
        <namePart type="given">Yuchen</namePart>
        <namePart type="family">Lin</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Kenny</namePart>
        <namePart type="family">Zhu</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2018-07</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Iryna</namePart>
            <namePart type="family">Gurevych</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Yusuke</namePart>
            <namePart type="family">Miyao</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Melbourne, Australia</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>LocatedNear relation is a kind of commonsense knowledge describing two physical objects that are typically found near each other in real life. In this paper, we study how to automatically extract such relationship through a sentence-level relation classifier and aggregating the scores of entity pairs from a large corpus. Also, we release two benchmark datasets for evaluation and future research.</abstract>
    <identifier type="citekey">xu-etal-2018-automatic</identifier>
    <identifier type="doi">10.18653/v1/P18-2016</identifier>
    <location>
        <url>https://aclanthology.org/P18-2016/</url>
    </location>
    <part>
        <date>2018-07</date>
        <extent unit="page">
            <start>96</start>
            <end>101</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Automatic Extraction of Commonsense LocatedNear Knowledge
%A Xu, Frank F.
%A Lin, Bill Yuchen
%A Zhu, Kenny
%Y Gurevych, Iryna
%Y Miyao, Yusuke
%S Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F xu-etal-2018-automatic
%X LocatedNear relation is a kind of commonsense knowledge describing two physical objects that are typically found near each other in real life. In this paper, we study how to automatically extract such relationship through a sentence-level relation classifier and aggregating the scores of entity pairs from a large corpus. Also, we release two benchmark datasets for evaluation and future research.
%R 10.18653/v1/P18-2016
%U https://aclanthology.org/P18-2016/
%U https://doi.org/10.18653/v1/P18-2016
%P 96-101
Markdown (Informal)
[Automatic Extraction of Commonsense LocatedNear Knowledge](https://aclanthology.org/P18-2016/) (Xu et al., ACL 2018)
ACL
- Frank F. Xu, Bill Yuchen Lin, and Kenny Zhu. 2018. Automatic Extraction of Commonsense LocatedNear Knowledge. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 96–101, Melbourne, Australia. Association for Computational Linguistics.