@inproceedings{pezzelle-etal-2018-guessed,
title = "Some of Them Can be Guessed! Exploring the Effect of Linguistic Context in Predicting Quantifiers",
author = "Pezzelle, Sandro and
Steinert-Threlkeld, Shane and
Bernardi, Raffaella and
Szymanik, Jakub",
editor = "Gurevych, Iryna and
Miyao, Yusuke",
booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P18-2019",
doi = "10.18653/v1/P18-2019",
pages = "114--119",
abstract = "We study the role of linguistic context in predicting quantifiers ({`}few{'}, {`}all{'}). We collect crowdsourced data from human participants and test various models in a local (single-sentence) and a global context (multi-sentence) condition. Models significantly out-perform humans in the former setting and are only slightly better in the latter. While human performance improves with more linguistic context (especially on proportional quantifiers), model performance suffers. Models are very effective in exploiting lexical and morpho-syntactic patterns; humans are better at genuinely understanding the meaning of the (global) context.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pezzelle-etal-2018-guessed">
<titleInfo>
<title>Some of Them Can be Guessed! Exploring the Effect of Linguistic Context in Predicting Quantifiers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sandro</namePart>
<namePart type="family">Pezzelle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shane</namePart>
<namePart type="family">Steinert-Threlkeld</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Raffaella</namePart>
<namePart type="family">Bernardi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jakub</namePart>
<namePart type="family">Szymanik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yusuke</namePart>
<namePart type="family">Miyao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We study the role of linguistic context in predicting quantifiers (‘few’, ‘all’). We collect crowdsourced data from human participants and test various models in a local (single-sentence) and a global context (multi-sentence) condition. Models significantly out-perform humans in the former setting and are only slightly better in the latter. While human performance improves with more linguistic context (especially on proportional quantifiers), model performance suffers. Models are very effective in exploiting lexical and morpho-syntactic patterns; humans are better at genuinely understanding the meaning of the (global) context.</abstract>
<identifier type="citekey">pezzelle-etal-2018-guessed</identifier>
<identifier type="doi">10.18653/v1/P18-2019</identifier>
<location>
<url>https://aclanthology.org/P18-2019</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>114</start>
<end>119</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Some of Them Can be Guessed! Exploring the Effect of Linguistic Context in Predicting Quantifiers
%A Pezzelle, Sandro
%A Steinert-Threlkeld, Shane
%A Bernardi, Raffaella
%A Szymanik, Jakub
%Y Gurevych, Iryna
%Y Miyao, Yusuke
%S Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F pezzelle-etal-2018-guessed
%X We study the role of linguistic context in predicting quantifiers (‘few’, ‘all’). We collect crowdsourced data from human participants and test various models in a local (single-sentence) and a global context (multi-sentence) condition. Models significantly out-perform humans in the former setting and are only slightly better in the latter. While human performance improves with more linguistic context (especially on proportional quantifiers), model performance suffers. Models are very effective in exploiting lexical and morpho-syntactic patterns; humans are better at genuinely understanding the meaning of the (global) context.
%R 10.18653/v1/P18-2019
%U https://aclanthology.org/P18-2019
%U https://doi.org/10.18653/v1/P18-2019
%P 114-119
Markdown (Informal)
[Some of Them Can be Guessed! Exploring the Effect of Linguistic Context in Predicting Quantifiers](https://aclanthology.org/P18-2019) (Pezzelle et al., ACL 2018)
ACL