@inproceedings{vaidyanathan-etal-2018-snag,
title = "{SNAG}: Spoken Narratives and Gaze Dataset",
author = "Vaidyanathan, Preethi and
Prud{'}hommeaux, Emily T. and
Pelz, Jeff B. and
Alm, Cecilia O.",
editor = "Gurevych, Iryna and
Miyao, Yusuke",
booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P18-2022/",
doi = "10.18653/v1/P18-2022",
pages = "132--137",
abstract = "Humans rely on multiple sensory modalities when examining and reasoning over images. In this paper, we describe a new multimodal dataset that consists of gaze measurements and spoken descriptions collected in parallel during an image inspection task. The task was performed by multiple participants on 100 general-domain images showing everyday objects and activities. We demonstrate the usefulness of the dataset by applying an existing visual-linguistic data fusion framework in order to label important image regions with appropriate linguistic labels."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="vaidyanathan-etal-2018-snag">
<titleInfo>
<title>SNAG: Spoken Narratives and Gaze Dataset</title>
</titleInfo>
<name type="personal">
<namePart type="given">Preethi</namePart>
<namePart type="family">Vaidyanathan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="given">T</namePart>
<namePart type="family">Prud’hommeaux</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jeff</namePart>
<namePart type="given">B</namePart>
<namePart type="family">Pelz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cecilia</namePart>
<namePart type="given">O</namePart>
<namePart type="family">Alm</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yusuke</namePart>
<namePart type="family">Miyao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Humans rely on multiple sensory modalities when examining and reasoning over images. In this paper, we describe a new multimodal dataset that consists of gaze measurements and spoken descriptions collected in parallel during an image inspection task. The task was performed by multiple participants on 100 general-domain images showing everyday objects and activities. We demonstrate the usefulness of the dataset by applying an existing visual-linguistic data fusion framework in order to label important image regions with appropriate linguistic labels.</abstract>
<identifier type="citekey">vaidyanathan-etal-2018-snag</identifier>
<identifier type="doi">10.18653/v1/P18-2022</identifier>
<location>
<url>https://aclanthology.org/P18-2022/</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>132</start>
<end>137</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SNAG: Spoken Narratives and Gaze Dataset
%A Vaidyanathan, Preethi
%A Prud’hommeaux, Emily T.
%A Pelz, Jeff B.
%A Alm, Cecilia O.
%Y Gurevych, Iryna
%Y Miyao, Yusuke
%S Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F vaidyanathan-etal-2018-snag
%X Humans rely on multiple sensory modalities when examining and reasoning over images. In this paper, we describe a new multimodal dataset that consists of gaze measurements and spoken descriptions collected in parallel during an image inspection task. The task was performed by multiple participants on 100 general-domain images showing everyday objects and activities. We demonstrate the usefulness of the dataset by applying an existing visual-linguistic data fusion framework in order to label important image regions with appropriate linguistic labels.
%R 10.18653/v1/P18-2022
%U https://aclanthology.org/P18-2022/
%U https://doi.org/10.18653/v1/P18-2022
%P 132-137
Markdown (Informal)
[SNAG: Spoken Narratives and Gaze Dataset](https://aclanthology.org/P18-2022/) (Vaidyanathan et al., ACL 2018)
ACL
- Preethi Vaidyanathan, Emily T. Prud’hommeaux, Jeff B. Pelz, and Cecilia O. Alm. 2018. SNAG: Spoken Narratives and Gaze Dataset. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 132–137, Melbourne, Australia. Association for Computational Linguistics.