
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 132–137
Melbourne, Australia, July 15 - 20, 2018. c©2018 Association for Computational Linguistics

132

SNAG: Spoken Narratives and Gaze Dataset

Preethi Vaidyanathan†‡, Emily Prud’hommeaux‡◦, Jeff B. Pelz‡, Cecilia O. Alm‡
† LC Technologies, Inc., Fairfax, Virginia, USA

‡ Rochester Institute of Technology, Rochester, New York, USA
◦ Boston College, Boston, Massachusetts, USA

{pxv1621,emilypx}@rit.edu, pelz@cis.rit.edu, coagla@rit.edu

Abstract

Humans rely on multiple sensory
modalities when examining and reasoning
over images. In this paper, we describe
a new multimodal dataset that consists
of gaze measurements and spoken
descriptions collected in parallel during
an image inspection task. The task was
performed by multiple participants on 100
general-domain images showing everyday
objects and activities. We demonstrate
the usefulness of the dataset by applying
an existing visual-linguistic data fusion
framework in order to label important
image regions with appropriate linguistic
labels.

1 Introduction

In recent years, eye tracking has become
widespread, with applications ranging from VR
to assistive communication (Padmanaban et al.,
2017; Holmqvist et al., 2017). Gaze data, such as
fixation location and duration, can reveal crucial
information about where observers look and how
long they look at those locations. Researchers
have used gaze measurements to understand where
drivers look and to identify differences in experts’
and novices’ viewing behaviors in domain-specific
tasks (Underwood et al., 2003; Eivazi et al.,
2012). Numerous studies highlight the potential
of gaze data to shed light on how humans process
information, make decisions, and vary in observer
behaviors (Fiedler and Glöckner, 2012; Guo et al.,
2014; Hayes and Henderson, 2017; Brunyé and
Gardony, 2017). Eye tracking has also long been
an important tool in psycholinguistics (Cooper,
1974; Rayner, 1998; Richardson and Dale, 2005;
Shao et al., 2013).

Co-collecting observers’ gaze information and
spoken descriptions of visual input has the

potential to provide insight into how humans
understand what they see. There is a need for
public datasets containing both modalities. In this
paper, we present the Spoken Narratives and Gaze
dataset (SNAG), which contains gaze information
and spoken narratives co-captured from observers
as they view general domain images. We describe
the data collection procedure using a high-quality
eye-tracker, summary statistics of the multimodal
data, and the results of applying a visual-lingustic
alignment framework to automatically annotate
regions of general-domain images, inspired by
Vaidyanathan et al.’s (2016) work on medical
images. Our main contributions are as follows:

1. We provide the language and vision
communities with a unique multimodal
dataset1 comprised of co-captured gaze and
audio data, and transcriptions. This dataset
was collected via an image-inspection
task with 100 general-domain images and
American English speakers.

2. We demonstrate the usefulness of this
general-domain dataset by applying
an existing visual-linguistic annotation
framework that successfully annotates image
regions by combining gaze and language
data.

2 Multimodal Data Collection

The IRB-approved data collection involved 40
university students who were native speakers
of American English (10 were later removed),
ranging in age from 18 to 25 years, viewing
and describing 100 general-domain images. We
sought out subjects who were speakers of
American English in order to ensure reliable ASR
output and a consistent vocabulary across subjects.
Subjects consented to data release. The images

1https://mvrl-clasp.github.io/SNAG/
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Figure 1: Data collection set-up. The eye tracker
is under the display. The observer wears a lapel
microphone connected to a TASCAM recorder.

were selected from MSCOCO (Microsoft Common
Objects in Context) (Lin et al., 2014), which
totals over 300,000 images representing complex
everyday scenes. The MSCOCO dataset was
created by pooling images from sources such as
Flickr and crowdsourcing them to obtain segments
and captions (not used in this work). A researcher
selected the images so that typically they depicted
an event with at least one initiator of the event
and one target of the action. Of the 100 images,
69 images clearly depict at least one event. The
MSCOCO images vary in number of objects, scale,
lighting, and resolution.

Gaze data was collected using a SensoMotoric
Instruments (Sensomotoric Instruments, 2016)
RED 250Hz eye-tracker attached under a display
(Figure 1). The reported accuracy of the RED 250
eye-tracker is 0.5 degree. It is a non-intrusive and
remote eye tracker that monitors the observer’s
gaze. Each image was presented to the observer
on a 22-inch LCD monitor (1680 × 1050 pixels)
located approximately 68 cm from the observer.
We employed a double computer set-up with
one computer used to present the image and the
other used to run the SMI software iViewX and
Experiment Center 2.3. After each stimulus, a
blank gray slide was inserted to ensure that the
gaze on the previous stimulus did not affect the
gaze on the following stimulus. The blank gray
slide was followed by a test slide with a small,
visible target at the center with an invisible trigger
area of interest. Using the test slide we could
measure the drift between the location of the target
at the center and the predicted gaze location over
time that may have occurred due to the observer’s
movements. A validation was performed every
10 images and re-calibration was applied if the

Figure 2: Example of multimodal data. Left: ASR
transcript of a participant’s spoken description.
Right: Gaze data for the same observer overlaid
on the image. Green circles show fixations, with
radius representing fixation duration. Green lines
connecting fixations represent saccades.

observer’s validation error was more than one
degree.

A TASCAM DR-100MKII recorder with
a lapel microphone was used to record the
spoken descriptions. To approximate the
Master-Apprentice data collection method
that helps in eliciting rich details (Beyer and
Holtzblatt, 1997), observers were instructed to
“describe the action in the images and tell the
experimenter what is happening.” Observers were
given a mandatory break after 50 images and
optional smaller breaks if needed to avoid fatigue.
Observers were given a package of cookies along
with a choice between entering into a raffle
to win one of two $25 gift cards or receiving
course credits. Observers were cooperative and
enthusiastic.

3 Fixations, Narratives, and Quality

The SMI software BeGaze 3.1.117 with default
parameters and a velocity-based (I-VT) algorithm
was used to detect eye-tracking events. Figure 2
shows an example of the scanpath with fixations
and saccades of an observer overlaid on an image.
Of the original 40 observers, we removed one
observer with partial data loss and nine observers
whose mean calibration and validation error was
greater than two standard deviations from the
mean in the horizontal or vertical direction. The
mean calibration accuracy (standard deviation)
for the remaining subjects was 0.67(0.25) and
0.74(0.27) degrees for the x and y directions,
respectively. One degree would translate to
approximately 40 pixels in our set-up, therefore
our mean calibration accuracy was roughly 27
pixels. For the remainder of this work, the corpus
size is 3000 multimodal instances (100 images
× 30 participants), with 13 female and 17 male
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Figure 3: Scatter plot of mean word types vs.
tokens per image. Example images have low
(green) and high (magenta) type-token ratio.

participants.
The speech recordings for the 3000 instances

were machine-transcribed using the cloud-based
IBM Watson Speech-to-Text service, an ASR
system accessible via a Websocket connection2.
Figure 2 (left panel) shows example ASR output,
which is accurate other than the substitution of
Kate for cake. IBM Watson reports timestamps
for each word, and those timestamps are included
in the released dataset. Additionally, all spoken
descriptions for a subset of 5 images were
manually corrected using Praat (Boersma, 2002)
in order to verify the quality of the ASR output.
We found the word error rate (WER) to be
remarkably low (5%), demonstrating the viability
of using ASR to automate the transcription of
the narratives. The ASR and manually corrected
transcriptions are included in the dataset.

A descriptive analysis of the gaze and narratives
shows that the average fixation duration across
the 30 participants was 250 milliseconds and the
average narrative duration was about 22 seconds.
The transcribed narratives were segmented into
word tokens using the default NLTK word
tokenizer. Various measures for the first-order
analysis of the narratives were then calculated.
The mean number of tokens and the average
duration of narratives together indicate that on
average observers uttered 2.5 words per second.
The mean type-token ratio was 0.75, suggesting
that there is substantial lexical diversity in the
narratives, which demonstrates the richness of
the dataset. Figure 3 shows a scatter plot for
the mean number of word types against the
mean number of word tokens for the 100 images

2https://www.ibm.com/watson/services/speech-to-text/

Figure 4: RegionLabeler GUI (released with
dataset) used to acquire reference alignments.
Annotator draws borders around regions and
checks off linguistic units.

across 30 participants. The plot illustrates that
a larger number of tokens typically results in
a larger number of types. Images 23, 3, and
24, highlighted in green, have fewer mean word
tokens and types than images 35, 90, and 94,
highlighted in magenta. For this dataset, this may
be due to the number of significant objects in the
images where a significant object is defined as an
object that occupies a significantly large area of
the image. Images 23, 3, and 24 have on average
two objects while images 35, 90, and 94 have more
than two.

4 Application to Multimodal Alignment

We examine the usefulness of our general-domain
dataset on image-region annotation, adapting the
framework given by Vaidyanathan et al. (2016).

Linguistic units: We process the narratives in
order to extract nouns and adjectives, which serve
as the linguistic units. Additionally, we remove
word tokens with a frequency of 1 in order to
reduce the impact of speech errors and one-off
ASR errors.

Visual units: To encode fixations into
meaningful regions similar to Vaidyanathan et al.
(2016) we apply mean shift fixation clustering
(MSFC). We also use modified k-means and
gradient segmentation (GSEG). Modified k-means
uses the number of clusters obtained from MSFC
as the value of k instead of 4 as in the original
framework. GSEG uses color and texture with
region merging to segment an image (Ugarriza
et al., 2009). The outputs of the three clustering
methods are shown in Figure 5. The rest of
the alignment framework, including using the
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Figure 5: Example region annotations. Top-left: Reference alignments. Alignment output using:
top-right: MSFC; bottom-left: modified k-means; and bottom-right: GSEG. Correct alignments in pink.
Misalignments and labels not belonging to reference alignments in yellow.

Berkeley aligner (Liang et al., 2006), remained the
same.

Reference alignments: Both SURE and
POSSIBLE (Och and Ney, 2003) reference
alignments were prepared using RegionLabeler,
a GUI (Figure 4) to allow evaluation of the
resulting multimodal alignments. With this tool,
an annotator drew borders of image regions and
selected the associated linguistic units.

Baseline alignments: For comparison, we use
the baselines proposed by Vaidyanathan et al.
(2016): simultaneous which assumes that the
observers utter the word corresponding to a region
at the exact moment their eyes fixate on that
region, and 1-second delay which assumes that
there is a 1-second delay between a fixation and
the utterance of the word corresponding to that
region.

5 Results and Discussion

We calculated average precision, recall, and AER
for alignments and compared them against the
baselines following Och and Ney (2003).

The two baselines performed similarly. Table 1
shows that the alignment framework performs
better than either baseline. MSFC yields the
highest recall and lowest AER with an absolute
improvement of 0%, 19%, and 10% for precision,
recall and AER, over the 1-second delay baseline.
Modified k-means achieves higher precision with

an absolute improvement of 6%, 14%, and 14%
over baseline. GSEG performed with less success.

Figure 5 visually compares reference and
obtained alignments. Most words are correctly
aligned. MSFC correctly aligns labels such as
cake and plates, yielding higher recall. It aligns
some labels such as plates to incorrect regions,
explaining the lower precision. All methods
erroneously assign labels not grounded to any
region but representing the perspective of the
photographer, such as camera, to regions in the
image, which lowers precision.

6 Related Work

There are publicly available datasets that provide
gaze data with no language data (Krafka et al.,
2016; Borji and Itti, 2015; Wilming et al.,
2017) for tasks such as image saliency or
driving. Vasudevan et al. (2018b) collected a
dataset in which crowdworkers viewed objects
in bounding boxes and read aloud pre-scripted
phrases describing those objects. Although their
dataset consists of spoken language, it lacks
co-collected gaze data and uses a bounding box
to highlight an object as opposed to allowing
the observer to view the image freely. A more
recent study describes the collection of a dataset
in which crowdworkers were instructed to draw
bounding boxes around objects in videos and
provide written phrases describing these objects
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MSFC Modified k-means
Precision Recall AER Precision Recall AER

Simultaneous 0.42 0.30 0.65 0.49 0.17 0.74
1-second delay 0.43 0.31 0.64 0.50 0.17 0.74
Alignment framework 0.43 0.50 0.54 0.56 0.31 0.60

Table 1: Average alignment performance across images. MSFC provides the best recall and lowest AER,
and modified k-means the best precision. In all cases, the alignment framework yields stronger results
than either of the timing-based baselines.

(Vasudevan et al., 2018a). In a separate task,
crowdworkers were asked to view those same
videos and to gaze within the bounding boxes
for each object while face data was recorded.
The authors infer gaze using the recorded
face data. None of these datasets involves
simultaneous visual-linguistic capture of spoken
narration or precision eye-tracking equipment
during naturalistic free viewing. Ho et al. (2015)
provide a dataset that consists only of gaze and
speech time stamps during dyadic interactions.
The closest dataset to ours is the multimodal but
non-public data described by Vaidyanathan et al.
(2016).

7 Conclusions

The SNAG dataset is a unique and novel resource
that can provide insights into how humans view
and describe scenes with common objects. In
this paper, we use SNAG to demonstrate that
multimodal alignment does not depend on expert
observers or image type, with comparable results
to Vaidyanathan et al. (2016) for dermatological
images. SNAG could also serve researchers outside
NLP, including psycholinguistics. Spontaneous
speech coupled with eye-tracking data could be
useful in answering questions about how humans
produce language when engaging with visual
tasks. Parallel data streams can, for example,
help in investigating questions such as the effects
of word complexity or frequency on language
formation and production. It might also aid in
studies of syntactic constructions and argument
structure, and how they relate to visual perception.
Qualitative analysis of our transcripts indicates
that they contain some emotional information in
the form of holistic comments on the overall
affect of the images, which could be helpful
in affective visual or linguistic computing tasks.
Future work could co-collect modalities such as
facial expressions, galvanic skin response, or other

biophysical signals with static or dynamic visual
materials.
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