@inproceedings{singla-etal-2018-multi,
title = "A Multi-task Approach to Learning Multilingual Representations",
author = "Singla, Karan and
Can, Dogan and
Narayanan, Shrikanth",
editor = "Gurevych, Iryna and
Miyao, Yusuke",
booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P18-2035/",
doi = "10.18653/v1/P18-2035",
pages = "214--220",
abstract = "We present a novel multi-task modeling approach to learning multilingual distributed representations of text. Our system learns word and sentence embeddings jointly by training a multilingual skip-gram model together with a cross-lingual sentence similarity model. Our architecture can transparently use both monolingual and sentence aligned bilingual corpora to learn multilingual embeddings, thus covering a vocabulary significantly larger than the vocabulary of the bilingual corpora alone. Our model shows competitive performance in a standard cross-lingual document classification task. We also show the effectiveness of our method in a limited resource scenario."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="singla-etal-2018-multi">
<titleInfo>
<title>A Multi-task Approach to Learning Multilingual Representations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Karan</namePart>
<namePart type="family">Singla</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dogan</namePart>
<namePart type="family">Can</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shrikanth</namePart>
<namePart type="family">Narayanan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yusuke</namePart>
<namePart type="family">Miyao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a novel multi-task modeling approach to learning multilingual distributed representations of text. Our system learns word and sentence embeddings jointly by training a multilingual skip-gram model together with a cross-lingual sentence similarity model. Our architecture can transparently use both monolingual and sentence aligned bilingual corpora to learn multilingual embeddings, thus covering a vocabulary significantly larger than the vocabulary of the bilingual corpora alone. Our model shows competitive performance in a standard cross-lingual document classification task. We also show the effectiveness of our method in a limited resource scenario.</abstract>
<identifier type="citekey">singla-etal-2018-multi</identifier>
<identifier type="doi">10.18653/v1/P18-2035</identifier>
<location>
<url>https://aclanthology.org/P18-2035/</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>214</start>
<end>220</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Multi-task Approach to Learning Multilingual Representations
%A Singla, Karan
%A Can, Dogan
%A Narayanan, Shrikanth
%Y Gurevych, Iryna
%Y Miyao, Yusuke
%S Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F singla-etal-2018-multi
%X We present a novel multi-task modeling approach to learning multilingual distributed representations of text. Our system learns word and sentence embeddings jointly by training a multilingual skip-gram model together with a cross-lingual sentence similarity model. Our architecture can transparently use both monolingual and sentence aligned bilingual corpora to learn multilingual embeddings, thus covering a vocabulary significantly larger than the vocabulary of the bilingual corpora alone. Our model shows competitive performance in a standard cross-lingual document classification task. We also show the effectiveness of our method in a limited resource scenario.
%R 10.18653/v1/P18-2035
%U https://aclanthology.org/P18-2035/
%U https://doi.org/10.18653/v1/P18-2035
%P 214-220
Markdown (Informal)
[A Multi-task Approach to Learning Multilingual Representations](https://aclanthology.org/P18-2035/) (Singla et al., ACL 2018)
ACL
- Karan Singla, Dogan Can, and Shrikanth Narayanan. 2018. A Multi-task Approach to Learning Multilingual Representations. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 214–220, Melbourne, Australia. Association for Computational Linguistics.