@inproceedings{seyler-etal-2018-study,
title = "A Study of the Importance of External Knowledge in the Named Entity Recognition Task",
author = "Seyler, Dominic and
Dembelova, Tatiana and
Del Corro, Luciano and
Hoffart, Johannes and
Weikum, Gerhard",
editor = "Gurevych, Iryna and
Miyao, Yusuke",
booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P18-2039/",
doi = "10.18653/v1/P18-2039",
pages = "241--246",
abstract = "In this work, we discuss the importance of external knowledge for performing Named Entity Recognition (NER). We present a novel modular framework that divides the knowledge into four categories according to the depth of knowledge they convey. Each category consists of a set of features automatically generated from different information sources, such as a knowledge-base, a list of names, or document-specific semantic annotations. Further, we show the effects on performance when incrementally adding deeper knowledge and discuss effectiveness/efficiency trade-offs."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="seyler-etal-2018-study">
<titleInfo>
<title>A Study of the Importance of External Knowledge in the Named Entity Recognition Task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dominic</namePart>
<namePart type="family">Seyler</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tatiana</namePart>
<namePart type="family">Dembelova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luciano</namePart>
<namePart type="family">Del Corro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Johannes</namePart>
<namePart type="family">Hoffart</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gerhard</namePart>
<namePart type="family">Weikum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yusuke</namePart>
<namePart type="family">Miyao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this work, we discuss the importance of external knowledge for performing Named Entity Recognition (NER). We present a novel modular framework that divides the knowledge into four categories according to the depth of knowledge they convey. Each category consists of a set of features automatically generated from different information sources, such as a knowledge-base, a list of names, or document-specific semantic annotations. Further, we show the effects on performance when incrementally adding deeper knowledge and discuss effectiveness/efficiency trade-offs.</abstract>
<identifier type="citekey">seyler-etal-2018-study</identifier>
<identifier type="doi">10.18653/v1/P18-2039</identifier>
<location>
<url>https://aclanthology.org/P18-2039/</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>241</start>
<end>246</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Study of the Importance of External Knowledge in the Named Entity Recognition Task
%A Seyler, Dominic
%A Dembelova, Tatiana
%A Del Corro, Luciano
%A Hoffart, Johannes
%A Weikum, Gerhard
%Y Gurevych, Iryna
%Y Miyao, Yusuke
%S Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F seyler-etal-2018-study
%X In this work, we discuss the importance of external knowledge for performing Named Entity Recognition (NER). We present a novel modular framework that divides the knowledge into four categories according to the depth of knowledge they convey. Each category consists of a set of features automatically generated from different information sources, such as a knowledge-base, a list of names, or document-specific semantic annotations. Further, we show the effects on performance when incrementally adding deeper knowledge and discuss effectiveness/efficiency trade-offs.
%R 10.18653/v1/P18-2039
%U https://aclanthology.org/P18-2039/
%U https://doi.org/10.18653/v1/P18-2039
%P 241-246
Markdown (Informal)
[A Study of the Importance of External Knowledge in the Named Entity Recognition Task](https://aclanthology.org/P18-2039/) (Seyler et al., ACL 2018)
ACL