@inproceedings{chalkidis-etal-2018-obligation,
title = "Obligation and Prohibition Extraction Using Hierarchical {RNN}s",
author = "Chalkidis, Ilias and
Androutsopoulos, Ion and
Michos, Achilleas",
editor = "Gurevych, Iryna and
Miyao, Yusuke",
booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P18-2041",
doi = "10.18653/v1/P18-2041",
pages = "254--259",
abstract = "We consider the task of detecting contractual obligations and prohibitions. We show that a self-attention mechanism improves the performance of a BILSTM classifier, the previous state of the art for this task, by allowing it to focus on indicative tokens. We also introduce a hierarchical BILSTM, which converts each sentence to an embedding, and processes the sentence embeddings to classify each sentence. Apart from being faster to train, the hierarchical BILSTM outperforms the flat one, even when the latter considers surrounding sentences, because the hierarchical model has a broader discourse view.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chalkidis-etal-2018-obligation">
<titleInfo>
<title>Obligation and Prohibition Extraction Using Hierarchical RNNs</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ilias</namePart>
<namePart type="family">Chalkidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ion</namePart>
<namePart type="family">Androutsopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Achilleas</namePart>
<namePart type="family">Michos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yusuke</namePart>
<namePart type="family">Miyao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We consider the task of detecting contractual obligations and prohibitions. We show that a self-attention mechanism improves the performance of a BILSTM classifier, the previous state of the art for this task, by allowing it to focus on indicative tokens. We also introduce a hierarchical BILSTM, which converts each sentence to an embedding, and processes the sentence embeddings to classify each sentence. Apart from being faster to train, the hierarchical BILSTM outperforms the flat one, even when the latter considers surrounding sentences, because the hierarchical model has a broader discourse view.</abstract>
<identifier type="citekey">chalkidis-etal-2018-obligation</identifier>
<identifier type="doi">10.18653/v1/P18-2041</identifier>
<location>
<url>https://aclanthology.org/P18-2041</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>254</start>
<end>259</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Obligation and Prohibition Extraction Using Hierarchical RNNs
%A Chalkidis, Ilias
%A Androutsopoulos, Ion
%A Michos, Achilleas
%Y Gurevych, Iryna
%Y Miyao, Yusuke
%S Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F chalkidis-etal-2018-obligation
%X We consider the task of detecting contractual obligations and prohibitions. We show that a self-attention mechanism improves the performance of a BILSTM classifier, the previous state of the art for this task, by allowing it to focus on indicative tokens. We also introduce a hierarchical BILSTM, which converts each sentence to an embedding, and processes the sentence embeddings to classify each sentence. Apart from being faster to train, the hierarchical BILSTM outperforms the flat one, even when the latter considers surrounding sentences, because the hierarchical model has a broader discourse view.
%R 10.18653/v1/P18-2041
%U https://aclanthology.org/P18-2041
%U https://doi.org/10.18653/v1/P18-2041
%P 254-259
Markdown (Informal)
[Obligation and Prohibition Extraction Using Hierarchical RNNs](https://aclanthology.org/P18-2041) (Chalkidis et al., ACL 2018)
ACL
- Ilias Chalkidis, Ion Androutsopoulos, and Achilleas Michos. 2018. Obligation and Prohibition Extraction Using Hierarchical RNNs. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 254–259, Melbourne, Australia. Association for Computational Linguistics.