@inproceedings{liu-etal-2018-narrative,
title = "Narrative Modeling with Memory Chains and Semantic Supervision",
author = "Liu, Fei and
Cohn, Trevor and
Baldwin, Timothy",
editor = "Gurevych, Iryna and
Miyao, Yusuke",
booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P18-2045",
doi = "10.18653/v1/P18-2045",
pages = "278--284",
abstract = "Story comprehension requires a deep semantic understanding of the narrative, making it a challenging task. Inspired by previous studies on ROC Story Cloze Test, we propose a novel method, tracking various semantic aspects with external neural memory chains while encouraging each to focus on a particular semantic aspect. Evaluated on the task of story ending prediction, our model demonstrates superior performance to a collection of competitive baselines, setting a new state of the art.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liu-etal-2018-narrative">
<titleInfo>
<title>Narrative Modeling with Memory Chains and Semantic Supervision</title>
</titleInfo>
<name type="personal">
<namePart type="given">Fei</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Timothy</namePart>
<namePart type="family">Baldwin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yusuke</namePart>
<namePart type="family">Miyao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Story comprehension requires a deep semantic understanding of the narrative, making it a challenging task. Inspired by previous studies on ROC Story Cloze Test, we propose a novel method, tracking various semantic aspects with external neural memory chains while encouraging each to focus on a particular semantic aspect. Evaluated on the task of story ending prediction, our model demonstrates superior performance to a collection of competitive baselines, setting a new state of the art.</abstract>
<identifier type="citekey">liu-etal-2018-narrative</identifier>
<identifier type="doi">10.18653/v1/P18-2045</identifier>
<location>
<url>https://aclanthology.org/P18-2045</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>278</start>
<end>284</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Narrative Modeling with Memory Chains and Semantic Supervision
%A Liu, Fei
%A Cohn, Trevor
%A Baldwin, Timothy
%Y Gurevych, Iryna
%Y Miyao, Yusuke
%S Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F liu-etal-2018-narrative
%X Story comprehension requires a deep semantic understanding of the narrative, making it a challenging task. Inspired by previous studies on ROC Story Cloze Test, we propose a novel method, tracking various semantic aspects with external neural memory chains while encouraging each to focus on a particular semantic aspect. Evaluated on the task of story ending prediction, our model demonstrates superior performance to a collection of competitive baselines, setting a new state of the art.
%R 10.18653/v1/P18-2045
%U https://aclanthology.org/P18-2045
%U https://doi.org/10.18653/v1/P18-2045
%P 278-284
Markdown (Informal)
[Narrative Modeling with Memory Chains and Semantic Supervision](https://aclanthology.org/P18-2045) (Liu et al., ACL 2018)
ACL