@inproceedings{roller-etal-2018-hearst,
title = "Hearst Patterns Revisited: Automatic Hypernym Detection from Large Text Corpora",
author = "Roller, Stephen and
Kiela, Douwe and
Nickel, Maximilian",
editor = "Gurevych, Iryna and
Miyao, Yusuke",
booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P18-2057",
doi = "10.18653/v1/P18-2057",
pages = "358--363",
abstract = "Methods for unsupervised hypernym detection may broadly be categorized according to two paradigms: pattern-based and distributional methods. In this paper, we study the performance of both approaches on several hypernymy tasks and find that simple pattern-based methods consistently outperform distributional methods on common benchmark datasets. Our results show that pattern-based models provide important contextual constraints which are not yet captured in distributional methods.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="roller-etal-2018-hearst">
<titleInfo>
<title>Hearst Patterns Revisited: Automatic Hypernym Detection from Large Text Corpora</title>
</titleInfo>
<name type="personal">
<namePart type="given">Stephen</namePart>
<namePart type="family">Roller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Douwe</namePart>
<namePart type="family">Kiela</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maximilian</namePart>
<namePart type="family">Nickel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yusuke</namePart>
<namePart type="family">Miyao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Methods for unsupervised hypernym detection may broadly be categorized according to two paradigms: pattern-based and distributional methods. In this paper, we study the performance of both approaches on several hypernymy tasks and find that simple pattern-based methods consistently outperform distributional methods on common benchmark datasets. Our results show that pattern-based models provide important contextual constraints which are not yet captured in distributional methods.</abstract>
<identifier type="citekey">roller-etal-2018-hearst</identifier>
<identifier type="doi">10.18653/v1/P18-2057</identifier>
<location>
<url>https://aclanthology.org/P18-2057</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>358</start>
<end>363</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Hearst Patterns Revisited: Automatic Hypernym Detection from Large Text Corpora
%A Roller, Stephen
%A Kiela, Douwe
%A Nickel, Maximilian
%Y Gurevych, Iryna
%Y Miyao, Yusuke
%S Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F roller-etal-2018-hearst
%X Methods for unsupervised hypernym detection may broadly be categorized according to two paradigms: pattern-based and distributional methods. In this paper, we study the performance of both approaches on several hypernymy tasks and find that simple pattern-based methods consistently outperform distributional methods on common benchmark datasets. Our results show that pattern-based models provide important contextual constraints which are not yet captured in distributional methods.
%R 10.18653/v1/P18-2057
%U https://aclanthology.org/P18-2057
%U https://doi.org/10.18653/v1/P18-2057
%P 358-363
Markdown (Informal)
[Hearst Patterns Revisited: Automatic Hypernym Detection from Large Text Corpora](https://aclanthology.org/P18-2057) (Roller et al., ACL 2018)
ACL