@inproceedings{van-der-goot-etal-2018-bleaching,
title = "Bleaching Text: Abstract Features for Cross-lingual Gender Prediction",
author = "van der Goot, Rob and
Ljube{\v{s}}i{\'c}, Nikola and
Matroos, Ian and
Nissim, Malvina and
Plank, Barbara",
editor = "Gurevych, Iryna and
Miyao, Yusuke",
booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P18-2061/",
doi = "10.18653/v1/P18-2061",
pages = "383--389",
abstract = "Gender prediction has typically focused on lexical and social network features, yielding good performance, but making systems highly language-, topic-, and platform dependent. Cross-lingual embeddings circumvent some of these limitations, but capture gender-specific style less. We propose an alternative: bleaching text, i.e., transforming lexical strings into more abstract features. This study provides evidence that such features allow for better transfer across languages. Moreover, we present a first study on the ability of humans to perform cross-lingual gender prediction. We find that human predictive power proves similar to that of our bleached models, and both perform better than lexical models."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="van-der-goot-etal-2018-bleaching">
<titleInfo>
<title>Bleaching Text: Abstract Features for Cross-lingual Gender Prediction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Rob</namePart>
<namePart type="family">van der Goot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nikola</namePart>
<namePart type="family">Ljubešić</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ian</namePart>
<namePart type="family">Matroos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Malvina</namePart>
<namePart type="family">Nissim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="family">Plank</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yusuke</namePart>
<namePart type="family">Miyao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Gender prediction has typically focused on lexical and social network features, yielding good performance, but making systems highly language-, topic-, and platform dependent. Cross-lingual embeddings circumvent some of these limitations, but capture gender-specific style less. We propose an alternative: bleaching text, i.e., transforming lexical strings into more abstract features. This study provides evidence that such features allow for better transfer across languages. Moreover, we present a first study on the ability of humans to perform cross-lingual gender prediction. We find that human predictive power proves similar to that of our bleached models, and both perform better than lexical models.</abstract>
<identifier type="citekey">van-der-goot-etal-2018-bleaching</identifier>
<identifier type="doi">10.18653/v1/P18-2061</identifier>
<location>
<url>https://aclanthology.org/P18-2061/</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>383</start>
<end>389</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Bleaching Text: Abstract Features for Cross-lingual Gender Prediction
%A van der Goot, Rob
%A Ljubešić, Nikola
%A Matroos, Ian
%A Nissim, Malvina
%A Plank, Barbara
%Y Gurevych, Iryna
%Y Miyao, Yusuke
%S Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F van-der-goot-etal-2018-bleaching
%X Gender prediction has typically focused on lexical and social network features, yielding good performance, but making systems highly language-, topic-, and platform dependent. Cross-lingual embeddings circumvent some of these limitations, but capture gender-specific style less. We propose an alternative: bleaching text, i.e., transforming lexical strings into more abstract features. This study provides evidence that such features allow for better transfer across languages. Moreover, we present a first study on the ability of humans to perform cross-lingual gender prediction. We find that human predictive power proves similar to that of our bleached models, and both perform better than lexical models.
%R 10.18653/v1/P18-2061
%U https://aclanthology.org/P18-2061/
%U https://doi.org/10.18653/v1/P18-2061
%P 383-389
Markdown (Informal)
[Bleaching Text: Abstract Features for Cross-lingual Gender Prediction](https://aclanthology.org/P18-2061/) (van der Goot et al., ACL 2018)
ACL
- Rob van der Goot, Nikola Ljubešić, Ian Matroos, Malvina Nissim, and Barbara Plank. 2018. Bleaching Text: Abstract Features for Cross-lingual Gender Prediction. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 383–389, Melbourne, Australia. Association for Computational Linguistics.